

CS2302-COMPUTER NETWORKS - UNIT-V C.S.ANITA
 ASSOC.PROF
 CSE,RMDEC

1

UNIT – V

Email (SMTP,MIME,POP3,IMAP) – HTTP – DNS- SNMP-FTP-TELNET-Security – PGP –
SSH

Introduction :

• The first is that it is important to distinguish between application programs and
application protocols.

• For example, the HyperText Transport Protocol (HTTP) is an application protocol that
is used to retrieve Web pages from remote servers.

• There can be many different application programs—that is,Web clients like Internet
Explorer, Mosaic, and Netscape—that provide users with a different look and feel, but
all of them use the same HTTP protocol to communicate with Web servers over the
Internet.

• This section focuses on four application protocols:
1. SMTP: Simple Mail Transfer Protocol is used to exchange electronic mail.
2. HTTP: HyperText Transport Protocol is used to communicate between Web

browsers and Web servers.
3. DNS : Domain Name System Protocol is used to query name servers and send

the responses.
4. SNMP: Simple Network Management Protocol is used to query (and sometimes

modify) the state of remote network nodes.
• All these protocols except DNS have a companion protocol that specifies the format of

the data that can be exchanged.
 For example, SMTP is a protocol for exchanging electronic mail

messages, but RFC 822 and MIME (Multipurpose Internet Mail
Extensions) define the format of email messages.

 Similarly, HTTP is a protocol for fetching Web pages, but HTML
(HyperText Markup Language) is a companion specification that
defines the form of those pages.

 Finally, SNMP is a protocol for querying a network node, but MIB
(management information base) defines the variables that can be
queried.

5. 1 Electronic Mail (SMTP, MIME, IMAP)

• Email is one of the oldest network applications.
• To learn how email works we need to distinguish between

 the user interface (i.e., your mail reader) and the underlying message
transfer protocol (in this case, SMTP),

 the transfer protocol and a companion protocol (RFC 822 and
MIME) that defines the format of the messages being exchanged.

CS2302-COMPUTER NETWORKS - UNIT-V C.S.ANITA
 ASSOC.PROF
 CSE,RMDEC

2

Message Format

RFC 822

• RFC 822 defines messages to have two parts:

a header and a body.

• Both are represented in ASCII text.
• The message header is a series of <CRLF>-terminated lines. (<CRLF> stands for
• carriage-return + line-feed, which are a pair of ASCII control characters often used to

indicate the end of a line of text.)
• The header is separated from the message body by a blank line.
• Each header line contains a type and value separated by a colon.
• Many of these header lines are familiar to users since they are asked to fill them out

when they compose an email message.
• For example,

 To: header identifies the message recipient
 Subject: header says something about the purpose of the message.

• Other headers are filled in by the underlying mail delivery system.
• For example,

 Date: (when the message was transmitted),
 From: (what user sent the message), and

• Received: (each mail server that handled this message).
• RFC 822 was extended in 1993 (and updated again in 1996) to allow email messages to

carry many different types of data: audio, video, images, Word documents,and so on.	
• RFC 822 has been augmented by MIME to allow the message body to carry all sorts of

data.

MIME (Multipurpose Internet Mail Extension)

• MIME consists of three basic pieces.
• The first piece is a collection of header lines. They include

 MIME-Version: (the version of MIME being used)
 Content-Description: (a human-readable description of what’s in the

message, analogous to the Subject: line)
 Content-Type: (the type of data contained in the message),
 Content-Transfer-Encoding: (how the data in the message body is

encoded).
• The second piece is definitions for a set of content types (and subtypes).
• For example,

 MIME defines two different still image types, denoted image/gif and
image/jpeg

CS2302-COMPUTER NETWORKS - UNIT-V C.S.ANITA
 ASSOC.PROF
 CSE,RMDEC

3

 As another example, text/plain refers to simple text,while text/richtext
denotes a message that contains “marked up” text .

• The third piece is a way to encode the various data types so they can be shipped
• in an ASCII email message.
• MIME uses a straightforward encoding of binary data into the ASCII character set.

The encoding is called base64.

Base 64 Encoding Scheme

1. The idea is to map every three bytes of the original binary data into four ASCII
characters.

2. This is done by grouping the binary data into 24-bit units.
3. Breaking each such unit into four 6-bit pieces.
4. Each 6-bit piece maps onto one of 64 valid ASCII characters.
5. The first 64 valid ASCII characters are the 52 upper- and lowercase letters, the 10

digits 0 through 9, and the special characters + and /.

• Putting this all together, a message that contains some plain text, a JPEG image,
• and a PostScript file would look something like this:

MIME-Version: 1.0
Content-Type:multipart/mixed;boundary="------- 417CA6E2DE4ABCAFBC5"
From: Alice Smith <Alice@cisco.com>
To: Bob@cs.Princeton.edu
Subject: promised material
Date: Mon, 07 Sep 1998 19:45:19 -0400

---------417CA6E2DE4ABCAFBC5
Content-Type: text/plain; charset=us-ascii
Content-Transfer-Encoding: 7bit

Bob,
Here's the jpeg image and draft report I promised.

--Alice

---------417CA6E2DE4ABCAFBC5
Content-Type: image/jpeg
Content-Transfer-Encoding: base64

. . . unreadable encoding of a jpeg figure
---------417CA6E2DE4ABCAFBC5
Content-Type: application/postscript; name="draft.ps"
Content-Transfer-Encoding: 7bit

CS2302-COMPUTER NETWORKS - UNIT-V C.S.ANITA
 ASSOC.PROF
 CSE,RMDEC

4

. . . readable encoding of a PostScript document

Message Transfer

• SMTP (Simple Mail Transfer Protocol)—the protocol used to transfer messages from

one host to another.
• The users interact with a mail reader when they compose, file, search, and read their

email.
• Most Web browsers now include a mail reader.
• There is a mail daemon (or process) running on each host. The mail daemon plays the e

role of a post office.
• Mail readers give the daemon messages they want to send to other users.
• The daemon uses SMTP running over TCP to transmit the message to a daemon

running on another machine.
• The daemon puts incoming messages into the user’s mailbox.
• Figure 5.1.1 illustrates a two-hop path from the sender to the receiver.

Figure 5.1.1 Sequence of mail gateways store and forward email messages.
• For example,

 Mail delivered to Bob@cs.princeton.edu is first sent to a mail gateway
in the CS Department at Princeton (that is, to the host named
cs.princeton.edu), and then forwarded—involving a second SMTP/TCP
connection—to the specific machine on which Bob happens to be
reading his email today.

 The forwarding gateway maintains a database that maps users into the
machine on which they currently want to receive their mail; the sender
need not be aware of this specific name. (The list of Received: header
lines in the message will help you trace the mail gateways that a given
message traversed.)

 Another reason is that the recipient’s machine may not always be up, in
which case the mail gateway holds the message until it can be delivered.

CS2302-COMPUTER NETWORKS - UNIT-V C.S.ANITA
 ASSOC.PROF
 CSE,RMDEC

5

• SMTP is best understood by a simple example.

The following is an exchange between sending host cs.princeton.edu and
receiving host cisco.com. In this case, user Bob at Princeton is trying to send mail to
users Alice and Tom at Cisco.

HELO cs.princeton.edu
250 Hello daemon@mail.cs.princeton.edu [128.12.169.24]

MAIL FROM:<Bob@cs.princeton.edu>
250 OK

RCPT TO:<Alice@cisco.com>
250 OK

RCPT TO:<Tom@cisco.com>
550 No such user here

DATA
354 Start mail input; end with <CRLF>.<CRLF>
Blah blah blah...
...etc. etc. etc.
<CRLF>.<CRLF>
250 OK

QUIT
221 Closing connection

 Explanation of the SMTP Example
 SMTP involves a sequence of exchanges between the client and the

server.
 In each exchange, the client posts a command (e.g., HELO, MAIL,

RCPT, DATA, QUIT) and the server responds with a code (e.g., 250,
550, 354, 221).

 The server also returns a human-readable explanation for the code (e.g.,
No such user here).

 In this particular example, the client first identifies itself to the server
with the HELO command. It gives its domain name as an argument.

 The server verifies that this name corresponds to the IP address being
used by the TCP connection; you’ll notice the server states this IP
address back to the client.

 The client then asks the server if it is willing to accept mail for two
different users; the server responds by saying “yes” to one and “no” to
the other.

CS2302-COMPUTER NETWORKS - UNIT-V C.S.ANITA
 ASSOC.PROF
 CSE,RMDEC

6

 Then the client sends the message, which is terminated by a line with a
single period (“.”) on it.

 Finally, the client terminates the connection.
Mail Reader

• The final step is for the user to actually retrieve his or her messages from the mailbox,

read them, reply to them, and possibly save a copy for future reference.
• The user performs all these actions by interacting with a mail reader.
• In many cases, this reader is just a program running on the same machine as the user’s

mailbox resides, in which case it simply reads and writes the file that implements the
mailbox.

• In other cases, the user accesses his or her mailbox from a remote machine using yet
another protocol, such as the Post Office Protocol (POP) or the Internet Message
Access Protocol (IMAP).

IMAP
• It is a client/server protocol running over TCP, where the client (running on the user’s

desktop machine) issues commands in the form of <CRLF>-terminated ASCII text
lines and the mail server (running on the machine that maintains the user’s mailbox)
responds in kind.

• The exchange begins with the client authenticating him- or herself, and identifying the
mailbox he or she wants to access.

• This can be represented by the simple state transition diagram shown in Figure 5.1.2.

CS2302-COMPUTER NETWORKS - UNIT-V C.S.ANITA
 ASSOC.PROF
 CSE,RMDEC

7

Figure 5.1.2 IMAP state transition diagram.

5.2 World Wide Web (HTTP)

• The World Wide Web has been so successful and has made the Internet accessible to so
many people that sometimes it seems to be synonymous with the Internet.

• Any web browser has a function that allows the users to open a URL
• URLs (Uniform Resource Locators) provide information about the location of objects

on the Web; they look like the following:

CS2302-COMPUTER NETWORKS - UNIT-V C.S.ANITA
 ASSOC.PROF
 CSE,RMDEC

8

http://www.cs.princeton.edu/index.html
• If you opened that particular URL, your Web browser would open a TCP connection to

the Web server at a machine called www.cs.princeton.edu and immediately retrieve and
display the file called index.html.

• Most files on the Web contain images and text, and some have audio and video clips.
They also include URLs that point to other files, and your Web browser will have some
way in which you can recognize URLs and ask the browser to open them.

• These embedded URLs are called hypertext links.
• When you ask yourWeb browser to open one of these embedded URLs (e.g., by

pointing and clicking on it with a mouse), it will open a new connection and retrieve
and display a new file.

• This is called “following a link.”
• It thus becomes very easy to hop from one machine to another around the network,

following links to all sorts of information.
• When you select to view a page, your browser (the client) fetches the page from
• the server using HTTP running over TCP.
• LikeSMTP, HTTPis a text-oriented protocol.
• Each HTTP message has the general form

START_LINE <CRLF>
MESSAGE_HEADER <CRLF>
<CRLF>
MESSAGE_BODY <CRLF>

• Where <CRLF> stands for carriage-return-line-feed.
• The first line (START LINE) indicates whether this is a request message or a response

message.
• The next set of lines specifies a collection of options and parameters that qualify the

request or response.
• HTTP defines many possible header types, some of which pertain to request messages,
• some to response messages, and some to the data carried in the message body.
• Finally, after the blank line comes the contents of the requested message (MESSAGE

BODY); this part of the message is typically empty for request messages.
Request Messages
• The first line of an HTTP request message specifies three things:

1. the operation to be performed
2. the Web page the operation should be performed on
3. the version of HTTP being used.

CS2302-COMPUTER NETWORKS - UNIT-V C.S.ANITA
 ASSOC.PROF
 CSE,RMDEC

9

Table 5.2.1 HTTP Request Operations

• The full set of HTTP request operations is summarized in Table 5.2.1
Response Messages
• Like request messages, response messages begin with a single START LINE.
• In this case, the line specifies the version of HTTP being used, a three-digit code

indicating whether or not the request was successful, and a text string giving the reason
for the response.

Table 5.2.2 Five types of HTTP result codes.
Uniform Resource Identifiers

• A URI is a character string that identifies a resource ,where a resource can be anything
that has an identity,such as a document,image or service.

• The first part of URI is a scheme that names a particular way of identifying a certain
kind of resource.

• The second part is the scheme-specific part.

CS2302-COMPUTER NETWORKS - UNIT-V C.S.ANITA
 ASSOC.PROF
 CSE,RMDEC

10

• The scheme is separated from the scheme-specific part by a colon.

Example
 mailto:santa@northpole.org

 file:///C:/foo.html

TCP Connections

• The original version of HTTP (1.0) established a separate TCP connection for each data
• item retrieved from the server.
• Connection setup and teardown messages had to be exchanged between the client and

server even if all the client wanted to do was verify that it had the most recent copy of a
page.

• Thus, retrieving a page that included some text and a dozen icons or other small
graphics would result in 13 separate TCP connections being established and closed.

• The most important improvement in the latest version of HTTP (1.1) is to allow
persistent connections—the client and server can exchange multiple request/response

• messages over the same TCP connection.
• Persistent connections have two advantages.

1. They eliminate the connection setup overhead, thereby reducing the
load on the server, the load on the network caused by the additional
TCP packets, and the delay perceived by the user.

2. TCP’s congestion window mechanism is able to operate more
efficiently because a client can send multiple request messages down
a single TCP connection.

• Persistent connections have a disadvantage.
 The problem is that neither the client nor server necessarily knows how

long to keep a particular TCP connection open. This is especially critical
on the server, which might be asked to keep connections open on behalf
of thousands of clients. The solution is that the server must time out and
close a connection if it has received no requests on the connection for a
period of time. Also, both the client and server must watch to see if the
other side has elected to close the connection, and they must use that
information as a signal that they should close their side of the connection
as well. (Recall that both sides must close a TCP connection before it is
fully terminated.)

Caching
• Caching has many benefits.
• From the client’s perspective, a page that can be retrieved from a nearby cache can be

displayed much more quickly than if it has to be fetched from across the world.
• From the server’s perspective, having a cache intercept and satisfy a request reduces

the load on the server.
• Caching can be implemented in many different places.

CS2302-COMPUTER NETWORKS - UNIT-V C.S.ANITA
 ASSOC.PROF
 CSE,RMDEC

11

• For example, a user’s browser can cache recently accessed pages, and simply display
the cached copy if the user visits the same page again.

• As another example, a site can support a single site wide cache. This allows users to
take advantage of pages previously downloaded by other users.

• There is a set of “cache directives” that must be obeyed by all caching mechanisms
along the request/response chain.

• These directives specify whether or not a document can be cached, how long it can be
cached, how fresh a document must be, and so on.

5.3 Network Management (SNMP)

• A network is a complex system, both in terms of the number of nodes that are
involved and in terms of the suite of protocols that can be running on any one node.

• All the state that is maintained and manipulated on any one of these nodes—for
example, address translation tables, routing tables, TCP connection state, and so on—
then it becomes tedious to manage all of this information.

• This is the problem of network management.
• Since the nodes we want to keep track of are distributed, our only real option is to use

the network to manage the network.
• This means we need a protocol that allows us to read, and possibly write, various pieces
• of state information on different network nodes.
• The most widely used protocol for this purpose is the Simple Network Management

Protocol (SNMP).
• SNMP is essentially a specialized request/reply protocol that supports two kinds of

request messages: GET and SET.
• GET is used to retrieve a piece of state from some node.
• SET is used to store a new piece of state in some node.
• SNMP also supports a third operation—GET-NEXT.
How does SNMP work?
• A system administrator interacts with a client program that displays information about

the network.
• This client program usually has a graphical interface.
• You can think of this interface as playing the same role as a Web browser.
• Whenever the administrator selects a certain piece of information that he or she wants

to see, the client program uses SNMP to request that information from the node in
question.

• An SNMP server running on that node receives the request, locates the appropriate
piece of information, and returns it to the client program, which then displays it to the
user.

• How does the client indicate which piece of information it wants to retrieve?
• How does the server know which variable in memory to read to satisfy the

request?
o The answer is that SNMP depends on a companion specification called the

management information base (MIB).

CS2302-COMPUTER NETWORKS - UNIT-V C.S.ANITA
 ASSOC.PROF
 CSE,RMDEC

12

o The MIB defines the specific pieces of information—the MIB variables—that
you can retrieve from a network node.

• The current version of MIB, called MIB-II, organizes variables into 10 different groups.
• Some examples of the groups are:

1. System: general parameters of the system (node) as a whole, including
where the node is located, how long it has been up, and the system’s name.

2. Interfaces: information about all the network interfaces (adaptors) attached
to this node, such as the physical address of each interface, how many
packets have been sent and received on each interface.

3. Address translation: information about the Address Resolution Protocol
(ARP), and in particular, the contents of its address translation table.

4. IP: variables related to IP, including its routing table, how many datagrams
it has successfully forwarded, and statistics about datagram reassembly.
Includes counts of how many times IP drops a datagram .

5. TCP: information about TCP connections, such as the number of passive
and active opens, the number of resets, the number of timeouts, default
timeout settings, and so on.

6. UDP: information about UDP traffic, including the total number of UDP
datagrams that have been sent and received.

• There are also groups for ICMP, EGP, and SNMP itself. The 10th group is used by
different media.

5.4 Name Service (DNS)

• We have been using addresses to identify hosts.
• Addresses are not exactly user friendly. It is for this reason that a unique name is also

typically assigned to each host in a network.
• We now describe how a naming service can be developed to map user-friendly

names into router-friendly addresses.
• Such a service is often the first application program implemented in a network since it

frees other applications to identify hosts by name rather than by address.
• Name services are sometimes called middleware because they fill a gap between

applications and the underlying network.
• Difference between host names and host addresses
• Host names are usually of variable length and mnemonic, thereby making them easier

for humans to remember. Host addresses are fixed-length numeric addresses are easier
for routers to process.

• Host names typically contain no information that helps the network locate the host.
Addresses, in contrast, sometimes have routing information embedded in them.

• A name space defines the set of possible names.
• A name space can be either flat (names are not divisible into components) or hierarchi-

CS2302-COMPUTER NETWORKS - UNIT-V C.S.ANITA
 ASSOC.PROF
 CSE,RMDEC

13

• cal (Unix file names are the obvious example).
• The naming system maintains a collection of bindings of names to values. The value

can be anything we want the naming system to return when presented with a name; in
many cases it is an address.

• A resolution mechanism is a procedure that, when invoked with a name, returns the
corresponding value.

• A name server is a specific implementation of a resolution mechanism that is
available on a network and that can be queried by sending it a message.

• The Internet has a particularly well-developed naming system—the domain name
system (DNS).

Birth of DNS
• The Internet did not always use DNS.
• Earlier, when there were only a few hundred hosts on the Internet, a central authority

called the Network Information Center (NIC) maintained a flat table of name-to-
address bindings, this table was called hosts.txt.

• Whenever a site wanted to add a new host to the Internet, the site administrator sent
email to the NIC giving the new host’s name/address pair.

• This information was manually entered into the table, the modified table was mailed
out to the various sites every few days, and the system administrator at each site
installed the table on every host at the site.

• Name resolution was then simply implemented by a procedure that looked up a host’s
name in the local copy of the table and returned the corresponding address.

• The hosts.txt approach could not be used as the number of hosts in the Internet started
to grow.

• Hence DNS was used which employs a hierarchical name space rather than a flat name
space, and the “table” of bindings that implements this name space is partitioned into
disjoint pieces and distributed throughout the Internet.

• These subtables are made available in name servers that can be queried over the
network.

• A user presents a host name to an applicationprogram (possibly embedded in a
compound name such as an email address or URL),

• The naming system is used to translate this name into a host address.
• The application then opens a connection to this host by presenting some transport

protocol (e.g., TCP) with the host’s IP address.
• This situation is illustrated (in the case of sending email) in Figure 5.4.1.

CS2302-COMPUTER NETWORKS - UNIT-V C.S.ANITA
 ASSOC.PROF
 CSE,RMDEC

14

Figure 5.4.1 Names translated into addresses,
where the numbers 1–5 show the sequence of steps in the process.

Domain Hierarchy

• DNS implements a hierarchical name space for Internet objects.
• DNS names are processed from right to left and use periods as the separator.
• An example domain name for a host is cicada.cs.princeton.edu.

Figure 5.4.2 Example of a domain hierarchy.

• The DNS hierarchy can be visualized as a tree,
o Each node corresponds to a domain
o Leaves correspond to the hosts being named.

• Figure 5.4.2 gives an example of a domain hierarchy.

CS2302-COMPUTER NETWORKS - UNIT-V C.S.ANITA
 ASSOC.PROF
 CSE,RMDEC

15

• There are domains for each country, plus the “big six” domains: edu, com, gov, mil,
org, and net.

• These six domains are all based in the United States; the only domain names that don’t
explicitly specify a country are those in the United States.

• This is because the development of DNS was originally funded by ARPA, the major
• research arm of the U.S. Department of Defense.

Name Servers

• The hierarchy is partitioned into subtrees called zones.
• For example, Figure 5.4.3 shows how the hierarchy given in Figure 5.4.2 might be

divided into zones.
• Each zone can be thought of as corresponding to some administrative authority that is

responsible for that portion of the hierarchy.

Figure 5.4.3 Domain hierarchy partitioned into zones.

• For example, the top level of the hierarchy forms a zone that is managed by the NIC.
Below this is a zone that corresponds to Princeton University.

• Within this zone, some departments do not want the responsibility of managing the
hierarchy (and so they remain in the university-level zone), while others, like the
Department of Computer Science, manage their own department-level zone.

• The relevance of a zone is that it corresponds to the fundamental unit of
implementation in DNS—the name server.

• The information contained in each zone is implemented in two or more name servers.
• Each name server, in turn, is a program that can be accessed over the Internet.
• Clients send queries to name servers, and name servers respond with the requested

information.
• Sometimes the response contains the final answer that the client wants, and sometimes

the response contains a pointer to another server that the client should query next.

CS2302-COMPUTER NETWORKS - UNIT-V C.S.ANITA
 ASSOC.PROF
 CSE,RMDEC

16

• It is more accurate to think of DNS as being represented by a hierarchy of name servers
rather than by a hierarchy of domains, as illustrated in Figure 5.4.4.

 Figure 5.4.4 Hierarchy of name servers.

Name Resolution

• Resolving a name actually involves a client querying the local server, which in turn acts

as a client that queries the remote servers on the original client’s behalf.
• This results in the client/server interactions illustrated in Figure 5.4.5.

CS2302-COMPUTER NETWORKS - UNIT-V C.S.ANITA
 ASSOC.PROF
 CSE,RMDEC

17

Figure 5.4.5 Name resolution in practice, where the numbers 1–8

show the sequence of steps in the process.
Advantages
1. All the hosts in the Internet do not have to be kept up-to-date on where the current root

servers are located; only the servers have to know about the root.
2. The local server gets to see the answers that come back from queries that are posted by

all the local clients. The local server caches these responses and is sometimes able to
resolve future queries without having to go out over the network.

5. 5 Security

 Introduction

• Users sometimes want to encrypt the messages they send, with the goal of keeping

anyone who is eavesdropping on the channel from being able to read the contents of
the message.

• The idea of encryption is simple enough.
• The sender applies an encryption function to the original plaintext message.
• The resulting ciphertext message is sent over the network.
• The receiver applies a reverse function (called decryption) to recover the original

plaintext.

CS2302-COMPUTER NETWORKS - UNIT-V C.S.ANITA
 ASSOC.PROF
 CSE,RMDEC

18

• The encryption/decryption process generally depends on a secret key shared
between the sender and the receiver.

• When a suitable combination of a key and an encryption algorithm is used, it is
sufficiently difficult for an eavesdropper to break the ciphertext, and the sender and
receiver can rest assured that their communication is secure.

• In contrast to a pair of participants sharing a single secret key, public key
cryptography involves each participant having a private key that is shared with no
one else and a public key that is published so everyone knows it.

• To send a secure message to this participant, you encrypt the message using the
widely known public key.

• The participant then decrypts the message using his or her private key.

Figure 5.5.1 Secret Key Encryption

Figure 5.5.2 Public Key Encryption

Pretty Good Privacy (PGP)

• Pretty Good Privacy (PGP) is a popular approach to providing encryption and
authentication capabilities for electronic mail.

• PGP provides authentication, confidentiality, data integrity and non-repudiance.
• PGP has become quite popular in the networking community.
• PGP keysigning parties are a regular feature of IETF meetings.
• Systems that operate at the application layer include Pretty Good Privacy (PGP), which

provides secure electronic mail, and Secure Shell (SSH), a secure remote login facility.
In between these are a number of protocols that operate at the transport layer, notably

CS2302-COMPUTER NETWORKS - UNIT-V C.S.ANITA
 ASSOC.PROF
 CSE,RMDEC

19

the IETF’s Transport Layer Security (TLS) standard and the older protocol from which
it derives, SSL (Secure Socket Layer). The following sections describe the salient
features of each of these approaches.

Example of how PGP works.
• Now suppose user A wants to send a message to user B and prove to B that it truly came

from A.
• PGP follows the following sequence of steps

1. A digitally signs the message using its private key.
2. Then the PGP application generates a one time session key using which

A’s message is encrypted.
3. The session key is encrypted using B’s public key.
4. The encrypted message and encrypted session key are encoded using

base64 encoding mechanism to get the ASCII compatible representation.
5. This is then sent to the receiver B.
6. The above steps are performed in reverse order to get the original message.

 Secure Shell (SSH)
• The Secure Shell (SSH) provides security to a remote login service.
• It is intended to replace the less secure Telnet and rlogin programs used in the early

days of the Internet
• SSH is most often used to provide strong client/server authentication.
• The SSH client runs on the user’s desktop machine and the SSH server runs on some

remote machine that the user wants to log into.
• When the users login, both their passwords and all the data they send or receive

potentially passes through countless untrusted networks.
• SSH provides a way to encrypt the data sent over these connections and to improve the

strength of the authentication mechanism they use to login.
• The latest version of SSH, version 2, consists of three protocols:

1. SSH-TRANS: a transport layer protocol
2. SSH-AUTH: an authentication protocol
3. SSH-CONN: a connection protocol

SSH-TRANS
• It provides an encrypted channel between the client and server machines.
• It runs on top of a TCP connection.
• Any time a user uses SSH to log onto a remote machine, the first step is to set up an

SSH-TRANS channel between those two machines.
• The two machines establish this secure channel by first having the client authenticate

the server using RSA.
• Once authenticated, the client and server establish a session key that they will use to

encrypt any data sent over the channel.
• Also, SSH-TRANS includes a message integrity check of all data exchanged over the

channel.

CS2302-COMPUTER NETWORKS - UNIT-V C.S.ANITA
 ASSOC.PROF
 CSE,RMDEC

20

How does the client possess the server’s public key that it needs to authenticate the
server?
• The server tells the client its public key at connection time.
• The first time a client connects to a particular server, SSH warns the user that it has

never talked to this machine before and asks if the user wants to continue.
• Although it is a risky thing to do, because SSH is effectively not able to authenticate

the server, users often say “yes” to this question.
• SSH then remembers the server’s public key, and the next time the user connects to that

same machine, it compares this saved key with the one the server responds with.
• If they are the same, SSH authenticates the server.
• If they are different, however, SSH again warns the user that something is amiss, and

the user is then given an opportunity to abort the connection.

SSH-AUTH

• The next step is for the user to actually log onto the machine, or more specifically,

authenticate him- or herself to the server.
• SSH allows three different mechanisms for doing this.

1. First, since the two machines are communicating over a secure channel, it is OK
for the user to simply send his or her password to the server.

2. The second mechanism uses public key encryption. This requires that the user has
already placed his or her public key on the server.

3. The third mechanism, called host-based authentication, basically says that any
user claiming to be so-and-so from a certain set of trusted hosts is automatically
believed to be that same user on the server.

• Finally, SSH has proven so useful as a system for securing remote login that it
• has been extended to also support other insecure TCP-based applications.
• The idea is to run these applications over a secure “SHH tunnel.” This capability is

called port forwarding, and it uses the SSH-CONN protocol. The idea is illustrated in
Figure 8.15, where we see a client on host A indirectly communicating with a server on
host B by forwarding its traffic through an SSH connection.

CS2302-COMPUTER NETWORKS - UNIT-V C.S.ANITA
 ASSOC.PROF
 CSE,RMDEC

21

Figure 5.5.3 Using SSH port forwarding to secure other TCP-based applications.

• The mechanism is called port forwarding because when messages arrive at the well-
known SSH port on the server, SSH first decrypts the contents, and then “forwards” the
data to the actual port at which the server is listening.

