

Mathematics - II - Some Important Questions

Part A

1. Find the particular integral of $y^{\prime \prime}-3 y^{\prime}+2 y=e^{x}-e^{2 x}$.
2. Solve $x^{2} y^{\prime \prime}-2 x y^{\prime}+2 y=0$.
3. Eliminate y from the system $\frac{d x}{d t}+2 y=-\sin t, \frac{d y}{d t}-2 x=\cos t$.
4. What is the greatest rate of increase of $\phi=x y z^{2}$ at $(1,0,3)$.
5. Find 'a' such that $(3 x-2 y+z) \vec{i}+(4 x+a y-z) \vec{j}+(x-y+2 z) \vec{k}$ is solenoidal.
6. If $\vec{F}=\left(4 x y-3 x^{2} z^{2}\right) \vec{i}+2 x^{2} \vec{j}-2 x^{3} z \vec{k}$. Check whether the integral $\int_{c} \vec{F} . d \vec{r}$ is independent of the path c .
7. Check the analyticity of the function $2 x y+i\left(x^{2}-y^{2}\right)$.
8. Find the constant ' a ' so that $u(x, y)=a x^{2}-y^{2}+x y$ is harmonic.
9. Find the image of $2 x+y-3=0$ under the transformation $w=z+2 i$.
10. Obtain the invariant points of the transformation $w=2-\frac{2}{z}$.
11. Find the particular integral of $y^{\prime \prime}-4 y=3^{x}$..
12. Solve $x^{2} y^{\prime \prime}-x y^{\prime}+y=0$.
13. Eliminate x from the system $\frac{d y}{d t}+2 x=0, \frac{d x}{d t}-2 y=0$.
14. Find the area of a circle of radius 'a' using Green's theorem.
15. Find 'a' such that $(3 x-2 y+z) \vec{i}+(4 x+a y-z) \vec{j}+(x-y+2 z) \vec{k}$ is solenoidal.
16. If $\vec{F}=\left(4 x y-3 x^{2} z^{2}\right) \vec{i}+2 x^{2} \vec{j}-2 x^{3} z \vec{k}$. Check whether the integral $\int_{c} \vec{F} \cdot d \vec{r}$ is independent of the path c .
17. Check the analyticity of the function $2 x y+i\left(x^{2}-y^{2}\right)$.
18. Find the constant ' a ' so that $u(x, y)=a x^{2}-y^{2}+x y$ is harmonic.
19. Find the image of $2 x+y-3=0$ under the transformation $w=z+2 i$.
20. Obtain the invariant points of the transformation $w=2-\frac{2}{z}$.
21. State Cauchy's Residue theorem.
22. Obtain the residues of the function $f(z)=\frac{z-3}{(z+1)(z+2)}$ at its poles.
23. Find the inverse L.T. of $\frac{1}{s(s-5)}$
24. If $\mathrm{L}[\mathrm{f}(\mathrm{t})]=\mathrm{F}(\mathrm{s})$, P.T. $\mathrm{L}[\mathrm{f}(3 \mathrm{t})]=\frac{1}{3} F\left(\frac{s}{3}\right)$.

16 marks

1.(a) (i) Solve $\left(D^{2}-2 D+5\right) y=e^{2 x} \sin x+2$.
(ii) Solve $\left(D^{2}-4 D+4\right) y=e^{2 x}$ by the method of variation of parameters.
(b) (i) Solve the simultaneous equations

$$
\frac{d x}{d t}+2 x+3 y=2 e^{2 t} \quad ; \frac{d y}{d t}+3 x+2 y=0 .
$$

(ii) Solve $\left[(x+1)^{2} D^{2}+(x+1) D+1\right\rfloor y=4 \cos [\log (x+1)]$.
2.(a) (i) Find ' a ' and ' b ' such that the surfaces $a x^{2}-b y z=(a+2) x$ and $4 x^{2} y+z^{3}=4$ cut orthogonally at $(1,-1,2)$.
(ii) Show that $r^{n} \vec{r}$ is an irrotational vector for any value of n but it is solenoidal only if $\mathrm{n}=-3$.
(b) (i) Using Green's theorem evaluate $\int_{c}(y-\sin x) d x+\cos x d y$ where c is the triangle OAB where $\mathrm{O}=(0,0), A=\left(\frac{\pi}{2}, 0\right), B=\left(\frac{\pi}{2}, 1\right)$.
(ii) Prove $\vec{F}=\left(y^{2} \cos x+z^{3}\right) \vec{i}+(2 y \sin x-4) \vec{j}+3 x z^{2} \vec{k}$ is irrotational and find its scalar potential.
3.(a) (i) Verify stroke's theorem for $\vec{F}=(y-z+2) \vec{i}+(y z+4) \vec{j}-x z \vec{k}$ over the open surfaces of the cube $x=0, y=0, z=0, x=1, y=1, z=1$ not included in the xoy plane.
(ii) Find the work done, when a force $\vec{F}=\left(x^{2}-y^{2}+x\right) \vec{i}-(2 x y+y) \vec{j}$ moves a particle from the origin to the point $(1,1)$ along $y^{2}=x$.
(b) (i) Verify Gauss divergence theorem for $\vec{F}=\left(x^{2}-y z\right) \vec{i}+\left(y^{2}-z x\right) \vec{j}+\left(z^{2}-x y\right) \vec{k}$ and S is the surface of the rectangular parallelepiped bounded by $x=0, x=a, y=0, y=b, z=0, z=c$.
(ii) Prove div $(u \operatorname{grad} v)=u \nabla^{2} v+(\operatorname{grad} u) \cdot(\operatorname{grad} v)$.
4. (a) (i) If $f(z)=u+i v$ is a regular function of z in a domain D the following relations hold in D . $\nabla^{2}\left\lfloor\left. f(z)\right|^{2}\right\rfloor=4\left|f^{\prime}(z)\right|^{2}$.
(ii) If $w=f(z)$ is analytic prove that $\frac{d w}{d z}=\frac{\partial w}{\partial x}=-i \frac{\partial w}{\partial y}$ where $\mathrm{z}=\mathrm{x}+\mathrm{iy}$ And prove that $\frac{\partial^{2} w}{\partial z \partial \bar{z}}=0$.
(b) (i) Determine the analytic function whose real part is

$$
\frac{\sin 2 x}{\cosh 2 y-\cos 2 x}
$$

(ii) Show that $\frac{x}{x^{2}+y^{2}}$ is harmonic.
5.(a) (i) Prove that an analytic function with constant modulus is constant.
(ii) Find the image of $|z-2 i|=2$ under the transformation $w=\frac{1}{z}$.
(b) (i) Find the bilinear transformation which maps the points $1, i,-1$ onto the points $0,1, \infty$. Show that the transformation maps the interior of the unit circle of the z-plane onto the upper half of the wplane.
(ii) Find the image of the circle $|z|=2$ under the transformation $w=z+3+2 i$.

6 (a) (i) Solve $\left(D^{2}-2 D+5\right) y=e^{2 x} \sin x+2$.
(ii) Solve $\left(D^{2}+4\right) y=\sec 2 x$ by the method of variation of parameters.
(b) (i) Solve the simultaneous equations

$$
\frac{d x}{d t}+2 x+3 y=2 e^{2 t} \quad ; \frac{d y}{d t}+3 x+2 y=0 .
$$

(ii) Solve $\left\lfloor(x+2)^{2} D^{2}-(x+2) D+1\right\rfloor y=x+2$.

7 .(a) (i) Find 'a' and 'b' such that the surfaces $a x^{2}-b y z=(a+2) x$ and $4 x^{2} y+z^{3}=4$ cut orthogonally at $(1,-1,2)$.
(ii) Show that $r^{n} \vec{r}$ is an irrotational vector for any value of n but it is solenoidal only if $\mathrm{n}=-3$.
(b) (i) Using Green's theorem evaluate $\int_{c}(y-\sin x) d x+\cos x d y$ where c is the triangle OAB where $\mathrm{O}=(0,0), A=\left(\frac{\pi}{2}, 0\right), B=\left(\frac{\pi}{2}, 1\right)$.
(ii) Prove $\vec{F}=\left(y^{2} \cos x+z^{3}\right) \vec{i}+(2 y \sin x-4) \vec{j}+3 x z^{2} \vec{k}$ is irrotational and find its scalar potential.
8.(a) (i) Verify stroke's theorem for $\vec{F}=\left(x^{2}-y^{2}\right) \vec{i}+2 x y \vec{j}$ over the rectangular region in the xoy plane bounded by the lines $x=0, y=0, x=a, y=b$.
(ii) Find the work done, when a force $\vec{F}=\left(x^{2}-y^{2}+x\right) \vec{i}-(2 x y+y) \vec{j}$ moves a particle from the origin to the point $(1,1)$ along $y^{2}=x$.
(b) (i) Verify Gauss divergence theorem for $\vec{F}=\left(x^{2}-y z\right) \vec{i}+\left(y^{2}-z x\right) \vec{j}+\left(z^{2}-x y\right) \vec{k}$ and S is the surface of the rectangular parallelepiped bounded by $x=0, x=a, y=0, y=b, z=0, z=c$.
(ii) Prove div $(u \operatorname{grad} v)=u \nabla^{2} v+(\operatorname{grad} u) \cdot(\operatorname{grad} v)$.

9 .(a) (i) If $f(z)=u+i v$ is a regular function of z in a domain D the following relations hold in D .

$$
\nabla^{2}\left\lfloor\left. f(z)\right|^{2}\right\rfloor=4\left|f^{\prime}(z)\right|^{2}
$$

(ii) If $w=f(z)$ is analytic prove that $\frac{d w}{d z}=\frac{\partial w}{\partial x}=-i \frac{\partial w}{\partial y}$ where $\mathrm{z}=\mathrm{x}+\mathrm{iy}$ And prove that $\frac{\partial^{2} w}{\partial z \partial \bar{z}}=0$.
(b) (i) Determine the analytic function whose real part is $\frac{\sin 2 x}{\cosh 2 y-\cos 2 x}$.
(ii) Show that $\frac{x}{x^{2}+y^{2}}$ is harmonic.

10 .(a) (i) Prove that an analytic function with constant modulus is constant.
(ii) Find the image of $|z-2 i|=2$ under the transformation $w=\frac{1}{z}$.
(b) (i) Find the bilinear transformation which maps the points $-1,0,1$ in the Z plane onto the points $0, i, 3 i$ in the w plane.
(ii) Find the image of the circle $|z|=2$ under the transformation $w=z+3+2 i$.
11.Using Cauchy's integral formula evaluate $\int_{c} \frac{z d z}{(z-1)(z-2)}$ where C is the circle $|z-2|=1 / 2$.
(ii)Find the Laurent's series expansion for the function $f(z)=\frac{7 z-2}{z(z-2)(z+1)}$ in the region $1<|z+1|<3$.
b) (i)Evaluate $\int_{0}^{2 \pi} \frac{d \theta}{13+5 S \operatorname{in} \theta}$ using contour integration.
12. . Find L.T. of $t^{2} e^{2 t} \cos 2 t$
(ii) Find L.T.of $\mathrm{f}(\mathrm{t})$ if $\mathrm{f}(\mathrm{t})=e^{t}, 0<\mathrm{t}<2 \pi$ with $f(t)=f(t+2 \pi)$.
b) (i)Solve using Laplace Transform $\frac{d^{2} y}{d t^{2}}+4 \frac{d t}{d t}+8 y=1$ given $\mathrm{y}(0)=0$ and $\mathrm{y}^{\prime}(0)=-1$.
(ii) Using convolution theorem find the inverse Laplace transform of $\frac{2}{(s+1)\left(s^{2}+4\right)}$

