	Control Structures

	

	Sequence control statements

	

	This type of statements insured that the instruction in a program is executed in the same order. In which they appear in the program.

	

	An example of sequential Control Statements:

	

	[image: image1.png]void main()

int a,b,c;

c=atb;

cIrscr();
printf("the sum of a and b=¥d",c);
%etch():

	

	Out put of the program

	

	[image: image2.png](68 Tk C+MOE]

	

	Explanation of the program:

	

	There are three variable a, b, c is declared as int datatype the value of a=2, b=3 and the result of the sum is stored in the c variable which is 5.

	

	Decision control & conditional statements

	

	Decision control statements and Conditional Statements allow the computer to take decision. And force to work under given condition:

	

	Decision control statements:

	

	It gives the control to the computer for taking the decisions.

	

	Two decisions control instruction which are implemented in C are following:

	

	a) The if statements.

	

	b) The if-else statements.

	

	General form of if statements is:

	if (condition is true) execute this statement;

	

	A structure image of if condition >

	

	[image: image3.png]BOOLEAN
EXPR

STATEMENT

REST OF
PROGRAM

	

	Here we can add else statement also as follow:

	

	else

	printf("you have enter number greater than 50");

	}

	

	An example of if-else statement:

	

	[image: image4.png]er any number less than 50 :- \n ");

DH

u
if(num<=50)

printf("you have enter no.less than 50 \n");
else

printf("vou have entered number greater than S0\n"
getchQ);
}

	

	Out put of the program:

	

	[image: image5.png]'S Twbo C++ IDE

72 o) plle)) slo) Al

enter any number less than 50 - E
60

vou have entered number greater than 50

	

	Explanation of the program:

	

	In the above given program you will be asked to enter any no which is less than 50.

	

	Suppose you enter 47 then you will get output, you have entered no. less than 50 value.

	

	Otherwise you have entered number greater than 50.

	

	A structure image of if else condition >

	

	[image: image6.png]STATEMENT ‘STATEMENT
A B

REST OF
PROGRAM

	

	Case control statements

	

	The Case control statements allow the computer to take decision as to be which statements are to be executed next. It is a multi way decision construct facilitate number of alternatives.

	

	C has multi way decision statement known as switch statements. It tests the value of a given variable or expression against a list of case value and when a match found a block of statement associated with the case is executed.

	

	Syntax of switch statement:

	

	switch(expression)

	{

	case constant_1:

	statements;

	case constant_2:

	statements;

	case constant_n:

	statements;

	default:

	statements;

	}

	

	Explanation:

	

	First in expression parentheses we give the condition.

	This condition checks to match, one by one with case constant.

	If value match then its statement will be executed. Otherwise the default statement will appear.

	

	A structure image of switch statements>

	

	[image: image7.png]DEFAULT
CODE

REST OF
PROGRAM

	

	An example program to check whether a given number is even or odd, using switch statements:

	

	[image: image8.png]CASETOOL.C

clrser();
printf¢*enter the number : -
seanteh e

pristfCimater 45 sr™);
reak;

case

prineeC aunber s 0dd);
reak;

?efau'lt: printf("no does not exist");

	

	Out put of the program

	

	[image: image9.png])

enter the number :

number is odd

	

	Explanation of the program:

	

	First you will be asked to enter any number

	Suppose you enter 7

	

	Now the given condition check, so the modulus is 0 or not. (% operator is use to find out the remainder)

	

	if the modulus is 0 then ch=1 otherwise 2, statement will be execute.

	

	Repitition & loop control statements

	

	This type of statements helps the computer to execute a group of statements repeatedly.

	

	This allows a set of instruction to be performed until a certain condition is reached.

	

	There are three types of loops in C:

	

	1. for loop

	2. while loop

	3. do-while loop

	

	The for loop

	

	There are three parts of for loop:

	

	a)counter initialization.

	b)check condition

	c)modification of counter.

	

	Syntax:

	for (variable initialize; check condition; modify counter)

	

	{

	statements 1;

	-----------;

	-----------;

	statements n;

	}

	

	Explanation:

	

	1. The initialization is usually an assignment that is used to set the loop control variable.

	

	2. The condition is a relational expression that determines when the loop will exit.

	

	3. The modify counter defines how loop control variables will change each time the loop is repeated.

	

	These three sections are separated by semicolon (;).

	

	The for loop is executed as long as the condition is true. When, the condition becomes false the programe execution will resume on the statement following the block.

	

	Advantage of for loop over other loops:

	

	All three parts of for loop (i.e. counter initialization, check condition, modification of counter) are implemented on a single line.

	

	A structure image of for loop >

	

	[image: image10.png]INIT EXPR

LoOP BODY

LOOP EXPR

REST OF
PROGRAM

	

	An example program to print a message 5 times using for loop:

	

	[image: image11.png]int i=13/* variable declaration®/
clrserQ);
for(i=131<=5;1++)

{
rintf("in the loop %d times \n",9);

getch();
+

	

	Out put of the program

	

	[image: image12.png]"3 Turbo C++ IDE il E]

Toop 1 times
Toop 2 times
loop 3 Times

Toop 4 times
Toop 5 times

	

	Explanation of the program:

	

	The o/p will be in the loop 1 time, 2times till 5 times.

	

	Something more about for loop:

	

	1. for (p=1,n=2;n<17;n++):- we can assign multiple variable together in for loop.

	

	2. for (n=1,m=50;n<=m;n=n+1,m=m-1):-The increment section may also have more than one part as given.

	

	3. for (i=1,sum=0;i<20&&sum<100;++i):-The test condition may have any compound relation as given.

	

	4. for (x=(m+n)/2;x>0;x=x/2):-It is also permissible to use expressions in the assignment statements of initialization and increment section as given.

	

	5. for (;m!=100;):-we can omitted the initialization and increment section to set up time delay.

	

	while loop

	

	It is a primitive type looping control because it repeats the loop a fixed no. of time. It is also called entry controlled loop statements.

	

	Syntax:

	

	while (test_condition)

	{

	body of loop

	}

	

	Explanation:

	

	The test condition is evaluated if the condition is true, the body of loop will be executed.

	

	A structure image of while >

	

	[image: image13.png]LooP BODY

REST OF
PROGRAM

	

	An example of program to print the number 1 to 10 using while loop:

	

	[image: image14.png]INCREMEN. C

void main()
{

:/% variable declaration®/

glrser @
i1e(1<=10)

printf(0 ,1);
+4;/% increménting the valuev/

}
getch();

	

	Out put of the program

	

	[image: image15.png]

	

	The do-while loop

	

	The minor Difference between the working of while and do-while loop is the place where the condition is tested.

	

	The while tests the condition before executing any of the statements within the while loop

	

	As against this, the do-while loop tests the condition after having executed the statement within the loop.

	

	syntax:

	

	do

	{

	body of loop;

	}

	while (test condition);

	

	A structure image of do-while loop >

	

	[image: image16.png]LoOP BODY

REST OF
PROGRAM

	

	Explanation:

	

	It first executes the body of the loop, and then evaluates the test condition. If the condition is true, the body of loop will executed again and again until the condition becomes false.

	

	Example of program using do-while loop:

	

	[image: image17.png]DOWHILE. C

Finclude <staio.m]
include <con
void main()

{

int x;/* variable declaration®/
x=10;

clrserQ;

do

{
printf(hello therein™):
X3

dnitecom10);
getch();

	

	Out put of the program

	

	[image: image18.png](B TabaCos e

	

	Explanation of the program:

	

	First it will print "hello there" then it will go for condition statements.

	

	

	
Some more statements

	

	The break Statement

	

	We have already met break in the discussion of the switch statement. It is used to exit from a loop or a switch, passing control to the first statement beyond the loop or a switch.

	

	With loops, break can be used to force an early exit from the loop, or to implement a loopwith a test to exit in the middle of the loop body.

	

	A break within a loop should always be protected within an if statement which provides the test to control the exit condition.

	

	An Example program to determine whether a number is prime or not:

	

	[image: image19.png]int num,i;/* variable declaration*/
clrser();

printf(enter a number - “);
Scanf(,anum);

i=2;
while(i<=t

i y
1 (numi

PrANLFCnot 2 prine o \n"Y;
break;/+it jumped out becalise the number not to be proved prir

or iR Cptine number"3;
} seteneyi3y

	

	Out put of the program

	

	[image: image20.png]3 Turbo Cee IDE

	

	The continue Statement

	

	This is similar to break but is encountered less frequently. It only works within loops where its effect is to force an immediate jump to the loop control statement.

	

	In a while loop, jump to the test statement.

	

	In a do while loop, jump to the test statement.

	

	In a for loop, jump to the test, and perform the iteration (looping).

	

	Like a break, continue should be protected by an if statement. You are unlikely to use it very often.

	

	An example of program using continue statement:

	

	

	[image: image21.png]CONTINUE. C

float x;/* variable declaration*/
clrserQ;
fordenine

scanf(7 ,ax);
2f(x<o)

X<=10; ++count)

printf("error-negative value for x");
continue;
“process the non-negative value of x =/

	

	Out put of the program

	

	[image: image22.png]error-negative value for x-7

error-negative value for x-8
error-negative value for x83

	

	The goto Statement

	

	C has a goto statement which permits unstructured jumps to be made. It requires a label in order to identify the place where the branch is to be made.

	

	A label is any valid variable name,and must be followed by a colon(:).

	

	Syntax:

	

	goto label;

	label:

	statement;

	

	The label can be any where in the program either before or after the goto label; statement.

	

	An example program using goto statement:

	

	[image: image23.png]void main()
{

it x,y;
clrser(d;
readiscanf(o ,&x);
iF(x<0)

{

goto read;

y=xex
printfC o
printf(’

)get:h();

	

	Out put of the program

	

	[image: image24.png]

	

	Explanation of the program

	

	Here the program will ask untill you give negative value at the time when you give positive value then instantly it will show you the square root value of the given number.

	

	Another use of the goto statement is to transfer the control out of a loop (or nested loops) when certain particular conditions are encountered.

	

	Note: We should try to avoid using goto as far as possible because, it is not good for readability of the program or to improve the program execution speed.

	

	The exit() function

	

	This function is used for terminating the execution of C program.

	

	Syntax:

	

	exit(int status);

	

	Array and String

	

	Introduction of Array

	

	Whenever there is need to store a group of data of the same type in the memory, arraysare used. Two terms has been described here Array and String.

	

	Strings in C are represented by the array only therefore it would be convenient to describestrings separately in the same block but in the different section.

	

	Arrays are the contiguous memory location used to store similar data type or in other terms we can say Arrays are a data structure which holds multiple variables of the same data type.

	

	Consider the case where a programmer needs to keep track of a number of people within an organization. So far, our initial attempt will be to create a specific variable for each user.

	

	This might look like:

	

	int name1 = 101;

	int name2 = 232;

	int name3 = 231;

	

	It becomes increasingly more difficult to keep track of this as the number of variablesincreases. Arrays offer a solution to this problem.

	

	An array is a multi-element box, a bit like a filing cabinet, and uses an indexing system to find each variable stored within it.

	

	In C, indexing starts at zero. Arrays, like other variables in C, must be declared before they can be used.

	

	The replacement of the above example using arrays looks like:

	

	int names[4];

	names[0] = 101;

	names[1] = 232;

	names[2] = 231;

	names[3] = 0;

	

	We created an array called names, which has space for four integer variables. You may also see that we stored 0 in the last space of the array.

	

	This is a common technique used by C programmers to signify the end of an array.

	

	An image showing internal stucture and location distribution method of array >

	

	[image: image25.png]- NUMBERS [5];

NUMBERS

	

	

	[image: image26.png]NUMBERS [2] =

NUMBERS

8

NUMBERS [1]= ;

	

	Array Declaration

	

	Arrays are defined in the same manner as ordinary variables, except that each arrayname must be accompanied by the size specification.

	

	The general form of array declaration is:

	

	data_type array_name[size];

	

	data-type specifies the type of array, size is a positive integer number or symbolic constant that indicates the maximum number of elements that can be stored in the array.

	

	Example:

	float height[50];

	

	This declaration declares an array named height containing 50 elements of type float.

	

	

	Array Initialization

	

	The Element of array are initialized in the same way as the ordinary variables.

	

	Example:

	

	int num[6]={2,4,5,35,12,12,67};

	

	An example showing the index and its corresponding data (prices) >

	

	[image: image27.png]PRICES

1.5(2.3||4.7|8.3(1.8|3.1|9.5

for (=0; | < 7; ++1) PRICES[]
printf ("%.1f *,PRICES[]);

15 23 47 83 18 31 95

	

	An example program of entering data into Array:

	

	[image: image28.png]ENTERARR.. C

{

int num[6];
int count;
clrserQ;
for {count:

;count<=5; count++)

N enter % element :*,_countsl);

i
printfC

?caﬂf(o ynumfcount]);
getch();
i

	

	Out put of the program

	

	[image: image29.png]element :
enter 2 element :45
enter 3 element :7
enter 4 element :68
enter 5 element :12

enter 6 element :34

	

	In this example, using the for loop, the process of asking and receiving the marks is accomplished.

	

	When the count has the value 0, the scanf() statement will cause the cvalue to be stored atnum[0].

	

	The process continues until count has the value greater than 5.

	

	Reading data from Array

	

	In the above program we enter the data into an Array. Now to read value from this array , we will again use for Loop.

	

	The below program segment explains the retrieval of the values from the array:

	

	[image: image30.png]void main()

int num[6];
int count;
clrserQ;
for (couin

{
FINtF("\n %d value

getchQ);
i

ount++)

+,num[count1);

	Two Dimensional Array

	

	Two dimensional array (2-D array) is also called Matrix

	

	General form of 2-D array is:

	

	data_type array_name[row_size][column_size];

	

	Example:

	int marks [4][2]

	

	Different ways of Initialization of a 2-Dimensional Array:

	

	int table [2][3]={0,0,0,1,1,1};

	initialization done by row.

	

	int table[2][3]={{0,0,0},{1,1,1}};

	surrounding the elements of each row by braces.

	

	int table[2][3]={{0,0,0,},

	initialization as matrix.

	

	An example program that stores roll number and marks obtained by a student side by side in Matrix:

	

	[image: image31.png]ROLLNO.C

void main()
{ int stud[41[2];
int 1,
clrserQd;
for(i=0}
203 341; 344)
{printf(" Enter rollno of %d student :-", 1#1);
scanf(0 ,&stud[11[31);
printf(" eiter Marks of %d student :- *, 141);
. Scanf¢ 0 ,&studl11031)3}
for(i=0;i<=3;i++)
{for (3=0;j<i;j+4)
Briastt kot 1ne of % student = 44,442, stud[4][4]
Printf(ek of nd cident -, T, stud I3

3
}getch();}

	

	Explanation

	

	There are two parts of the program. In the first part a for loop will read the values of rollno. and marks, whereas in the second part another loop will print these values.

	

	

	Multi Dimensional Array

	

	Arrays of three or more dimension is called Multi-Dimensional Array.

	

	General form Multi-Dimensional Array:

	

	data_type array_name[s1][s2][s3]......[sn];

	

	Example:

	int survey[3][5][12]

	

	Here survey is a 3-dimensionalarray declared to contain 180 integer_type elements.

	(3x5x12=180)

	

	Initialization of 4-Dimensional Array:

	

	static int arr [3] [4] [2]={{{2,4}, {7,3}, (3,4}, {5,1}, }, {{3,4}, {3,4}, {3,2}, {4,5}}, {{2,3}, {2,7}, {2,3}, {4,3}}}

	

	In this example, the outer array has three element , each of which is a two dimensional array of four rows, each other of which is a one dimensional array of two elements.

	

	An example program to sort an integer array:

	

	[image: image32.png]l#include <conio’h]
void wain|

int arri5]
int 3,7t
elescill;

for(i=B;i¢xt;iv+)

(
for(i=0;i<=h;ivs)
if‘(arrlli(arr[i])

i
arrlil=tenp;

)

printf(*n enter the elenents of the array

printf("\n the sorted array is :

NN AT

	

	Out put of the program

	

	[image: image33.png]enter the elenents of the array:99
34

0,
12
A

the sorted array is : -3 0

12

9.

	

	String

	

	Strings in C are represented by arrays of characters. The end of the string is marked with a special character, the null character, which is simply the character with the value 0.

	

	Because C has no built-in facilities for manipulating entire arrays (copying them, comparing them, etc.), it also has very few built-in facilities for manipulating strings.

	

	In fact, C's only truly built-in string-handling is that it allows us to use string constants(also called string literals) in our code.

	

	Whenever we write a string, enclosed in double quotes, C automatically creates an array of characters for us, containing that string, terminated by the \0 character.

	

	For example, we can declare and define an array of characters, and initialize it with a string constant:

	

	char string[] = "Hello, world!";

	

	Two ways to initilize string >

	

	[image: image34.png]1) WITH A LIST OF INDIVIDUAL CHARACTERS,
INCLUDING THE NULL CHARACTER.

o word[1={ , , , LW}

2) WITH A CONSTANT CHARACTER STRING.
~ oword[]={" ")

	

	In this case, we can leave out the dimension of the array, since the compiler can compute it for us based on the size of the initializer.

	

	This is the only case where the compiler sizes a string array for us, however; in other cases, it will be necessary that we decide how big the arrays we use to hold strings.

	

	An example program showing the character data type array:

	

	[image: image35.png]Tude
main.

char viord[61;
clrser(y;

word[5]="0
printf(*in the contants of werd(l is --:%s\n”,word);
)get:h(),

	

	Out put of the program

	

	[image: image36.png]

	

	In the above example, a character based array named word is declared, and each element of array is assigned a character.

	

	The last element is filled with a zero value, to signify the end of the character string (in C, there is no string type, so character based arrays are used to hold strings).

	

	A printf statement is then used to print out all elements of the array.

	

	Function and Recursion

	

	Function Definition

	

	Functions are self contained program segments that carry out some specific well defined task.

	

	In "C" , we include the header files like stdio, conio, string, etc.

	

	These files contain number of library functions which are as follows:

	

	printf(), scanf(), getchar(), putchar(), getche(), gets(), puts(), strlen(), getch(), etc.

	

	In C it is possible for the function to call themselves. we will see how it can be possible through Recursions.

	

	A Function is a self-contained block of statement that perform a coherent task of some kind. Every C program must have a function. One of the function must be main().

	

	Why should we use Function?

	

	a) Using function it becomes easier to write programs and keep track of what they are doing

	

	b) Length of the program can be reduced by using function.

	

	c) Debugging is easier.

	

	d) It facilitates top-down modular programming.

	

	Classification of Function

	

	C function can be classified into two categories:

	

	1. Library function:

	

	They are predefined in the standard library of C. We need to include the Library.

	

	2. User-defined function:

	

	User defined functions are need to be developed by the user at the time of program writing.

	

	Function Declaration

	

	Before defining the function, it is desired to declare the function with its prototype.

	

	In function prototype, the return value of function, type, and number of argument are specified.

	

	Function declaration is written in following ways:

	

	return data_type function_name (data_type argument 1, data_type argument 2data_type argument n)

	{

	local variable declaration;

	executable statement 1;

	executable statement 2

	executable statement n;

	return(expession);

	}

	

	Note: An empty pair of parenthesis must follow the function name if the function definition does not include any arguments.

	

	Example:

	

	If it returns a float than command is:

	

	float f1(float arg 1, int arg 2);

	

	if it returns no value or return a character, then replace float by void or char respectively. If no arguments passed into a function than command is:

	

	char fun1 ();

	

	An example program using a small add function:

	

	[image: image37.png]FUNCTION. C

int add{int a,int b); /* finction declaration */
printf(Tenter 2 numberin®);

scanf(,&a,&b);

sum=add(a,b)} /*function call #/

printfC 070 o0 0 0 a,b, sum);

i
getch();
2“! add(int a,int b)
int ¢;
c=ash;
return(c);

	

	Out put of the program

	

	[image: image38.png]"3 Tusbo Ces IDE

2 number

sum of 23 and 34 =57
[|

	

	Function Call

	

	Function can be called either by value or by reference .A function can be called by specifying its name followed by a list of arguments enclosed in parentheses and separated by commas.

	

	From the above example the following line is used as a function call:

	

	sum=add(a,b); /* function call */

	

	Call by value: Call by value means directly pass value within the function.

	

	An example program of call by value:

	

	[image: image39.png]CLLBYVAL.C

int a,b,c,sum;

clrser(3;

printf(“ln enter the three number “);
scanf(L, 8a,&h,8C);
sum=callsum(a,b,c);

printfC S sum)

callsun(x,y,2)
int x,y,2;

nt d;
doxtyez;
return(d);

	

	Out put of the program

	

	[image: image40.png]72 = ol £ o] Al

enter the three number 23

	

	Call by reference: Call by reference means sending the addresses of the argument to the called function.

	

	In this method the addresses of actual arguments in the calling function are copied into formal arguments of the called function. (later discussed in pointer section)

	

	The Return Statement

	

	Information is returned from the function to the calling portion of the program via return statement.

	

	

	General form of return statement:

	

	return;

	or

	return(expression);

	

	Storage Classes

	

	There are two different ways to characterize variables:

	

	1. By data type

	2. By storage Class

	

	Data type refers to the type of information while storage class refers to the life time of a variable and its scope within the program.

	

	A variable in c can have any one of the four storage classes:

	

	1. Automatic Variable:

	

	It is created when the function is called and destroy when the function is exited. Hence the name is Automatic. By default a variable is declared Automatic.

	

	2. External Variable:

	

	It is also known as Global Variable. This variables can be accessed from any function that falls within their scope.

	

	3. Static Variable:

	

	A static variable may be either internal or external type , depending on the place of declaration.

	

	Internal static variable extends up to the function in which they are defined and external static variable is declared outside of all function and is available to all the functions in the program.

	

	4. Register Variable:

	

	We can tell the compiler that a variable should be kept in one of the machine's registers, instead of keeping in the memory (where normal variables are stored).

	

	Since, a register access is much faster than a memory access and keeping the frequently accessed variables in the register will lead to faster execution of programs.

	

	Recursion

	

	Repetitive calling of the same function is called recursion. Recursions are those functions which call itself again and again. Recursive functions can easily become infinite loops.

	

	An example program to find out the factorial of any number is the one of the best example of recursion:

	

	[image: image41.png]printi
scantC Leay;
fact=factorial{a
PrANtFC\n Factorial of no = %d",factd;
getchO);

]
it factoriaiCint x)

Ptk
e,
{

return(1);

dise

s =xvfactorial(x-1);
Feturn(f;

24:33

	

	Out put of the program

	

	[image: image42.png]B Tabo Co+ OE

Enter the no :- §

Factorial of no = 120_

	

	Pointers

	

	Introduction

	

	Pointers are a fundamental part of C. If you cannot use pointers properly then you have basically lost all the power and flexibility that C allows. The secret of C is in its use ofpointers.

	

	C uses pointers a lot. Why?

	

	It is the only way to express some computations.

	

	It produces compact and efficient code.

	

	It provides a very powerful tool.

	

	C uses pointers explicitly with following:

	

	1. Functions.

	2. Arrays.

	3. Structures. (discussed later)

	

	Note: Pointers are perhaps the most difficult part of C to understand. C's implementation is slightly different from other languages.

	

	What is a Pointer?

	

	A pointer is a variable which can hold the address of a memory location rather than the value at the location.

	

	Pointer Notation

	

	The actual address of a variable is not known immediately. We can determine the address of the variable using address of operator(&).

	

	We have already seen the use of address of operator in the scanf() function.

	

	Another pointer operator available in C is "*" called "value of address" operator. It gives the value stored at a particular address. This operator is also known as indirection operator.

	

	Pointer Declaration

	

	To declare a pointer to a variable:

	

	int *pointer;

	

	Note: We must associate a pointer to a particular type: You can't assign the address of ashort int to a long int,

	

	

	Pointer expression

	

	Like other variables pointer variable can also be used in expressions. Arithmetic andcomparison operation can be performed on the pointers.

	

	Pointer Arithmetic

	

	Example:

	

	Addition of a number to a pointer int i=4,*j,*

	

	j=&i;

	j=j+1;

	j=j+9;

	k=j+3;

	

	Example:

	

	Subtraction of number from a pointer int i=4,*j,*k;

	

	j=&i;

	j=j-2;

	j=j-5;

	k=j-6;

	

	But the following operation are not allowed on pointers:

	

	a) multiplication of pointer with a constant

	

	b) addition of two pointer

	

	c) division of pointer with a constant

	

	Pointer Comparison

	

	Pointer can be compared using relational operator. Expression such as- p1>p2 p1=p2p1!=p2 are allowed.

	

	Pointer & functions

	

	Let us now examine the close relationship between pointers and C's other major parts. We will start with functions.

	

	When C passes arguments to functions it passes them by value.

	

	There are many cases when we may want to alter a passed argument in the function and receive the new value back once the function has finished.

	

	C uses pointers explicitly to do this.

	

	The best way to study this is to look at an example where we must be able to receive changed parameters. Let us try and write a function to swap variables around?

	

	The usual function call:

	

	swap (a, b) won't work.

	

	Pointers provide the solution: Pass the address of the variables to the functions and access address of function.

	

	Thus our function call in our program would look like this:

	

	swap (&a, &b)

	

	The Code to swap is fairly straightforward:

	

	void swap(int *px, int *py)

	{ int temp;

	temp = *px;

	/* contents of pointer */

	*px = *py;

	*py = temp;

	}

	

	
Pointer & Array

	

	Pointers and arrays are very closely linked in C.

	

	Hint: Think of array elements arranged in consecutive memory locations.

	

	Consider the following:

	

	int a[10], x;

	int *pa;

	pa = &a[0]; /* pa pointer to address of a[0] */

	x = *pa;

	

	/* x = contents of pa (a[0] in this case) */

	

	[image: image43.png]pat

	

	Warning: There is no bound checking of arrays and pointers so you can easily go beyond array memory and overwrite other things.

	

	C however is much more subtle in its link between arrays and pointers.

	

	For example we can just type:

	

	pa = a;

	instead of

	pa = &a[0]

	and

	a[i] can be written as *(a + i).

	i.e. &a[i] =a + i.

	

	We also express pointer addressing like this:

	

	pa[i] =*(pa + i).

	

	However pointers and arrays are different:

	

	A pointer is a variable. We can do pa = a and pa++.

	

	An Array is not a variable. a = pa and a++ ARE ILLEGAL

	

	This stuff is very important. Make sure you understand it. We will see a lot more of this. We can now understand how arrays are passed to functions.

	

	When an array is passed to a function what is actually passed is its initial element location in memory

	

	So: strlen(s) strlen(&s[0])

	

	This is why we declare the function:

	

	int strlen(char s[]);

	

	An equivalent declaration is:

	

	int strlen(char *s);

	

	since char s[] is equivalent to char *s.

	

	strlen () is a standard library function that returns the length of a string.

	

	Let's look at how we may write a function:

	

	int strlength(char *s)

	{

	char *p = s;

	while (*p != '\0');

	p++;

	return p-s;

	}

	

	Now let’s write a function to copy a string to another string. strcpy () is a standard library function that does this:

	

	void strcopy (char *s, char *t)

	{ while ((*s++ = *t++) != `\0');}

	

	This uses pointers and assignment by value.

	

	Note: Uses of Null statements with while.

	

	Malloc Library Function

	

	Function: Allocates main memory

	Syntax: void*malloc(size_t size);

	Prototype in: stdlib.h, alloc.h

	

	Remarks: malloc allocates a block of size bytes from the C heap memory. It allows a program to allocate memory explicitly, as it is needed and in the exact amounts needed.

	

	Calloc Library Function

	

	Function: Allocates main memory

	Syntax: void*calloc(size_t n size);

	Prototype in: stdlib.h, alloc.h

	

	Remarks: Calloc provides access to the C heap memory . Calloc allocates a block of size n items of x size. The block is cleared to 0.

	

	

	Multi Dimensional Arrays & Pointer

	

	We should think of multidimensional arrays in a different way in C:

	

	A 2D array is really a 1D array, each of whose elements is itself an array

	

	

	Hence

	

	a[n][m] notation.

	

	Array elements are stored row by row.

	

	When we pass a 2D array to a function we must specify the number of columns and the number of rows is irrelevant.

	

	The reason for this is pointers again. C needs to know how many columns in order that it can jump from row to row in memory.

	

	Considerint a[5][35] to be passed in a function:

	

	We can do:

	

	f(int a[][35]) {.....}

	

	or even:

	

	f(int (*a)[35]) {.....}

	

	We need parenthesis (*a) since [] have a higher precedence than *

	

	So:

	int (*a)[35]; /*declares a pointer to an array of 35 int */

	int *a[35]; /*declares an array of 35 pointers to int */

	

	Now lets look at the (subtle) difference between pointers and arrays. Strings are a common application of this.

	

	Consider:

	

	char *name[10];

	char Aname[10][20];

	

	We can legally do name[3][4] and Aname[3][4] in C.

	

	

	Arrays of Pointer

	

	We can have arrays of pointers since pointers are variables.

	

	Example use: Sort lines of text of different length.

	

	Note: Text can't be moved or compared in a single operation.

	

	Arrays of Pointers are a data representation that will cope efficiently and conveniently with variable length text lines.

	

	How can we do this: Store lines end-to-end in one big char array n will delimit lines.

	

	Store pointers in a different array where each pointer points to 1st char of each new line.

	

	Compare two lines using strcmp () standard library function.

	

	If 2 lines are out of order swap pointer in pointer array (not text).

	

	Pointer & functions

	

	When an array is passed to a function as an argument , only the address of the first element of the array is passed , but not the actual values of the array elements.

	

	If x is an array, when we call sort(x), the address of x[0] is passed to the function sort().

	

	The function uses this address for manipulating the array elements.

	

	The address of a variable can be passed as an argument to a function in the normal fashion.

	

	When address is passed to a function , the parameters receiving the address should be pointers.

	

	The process of calling a function using pointer to pass the address of variable is known as call by reference.

	

	The function which is called by reference can change the value of the variable used in the call.

	

	Example:

	

	main()

	{

	int x;

	x=20;

	change(&x);

	printf("%d\n",x);

	}

	change(int *p)

	{

	*p=*p+10;

	}

	

	Explanation: When the function change() is called, the address of the variable x, not its value, is passed into the function change().

	

	Inside change(), the value at which p points is incremented by 10 , and the changed value is then displayed in the main function.

	

	

	Structures

	

	Introduction

	

	The C language allows us to create custom data types.

	

	The structure is a custom data type which c combines different data types .

	

	The structure is a custom data type which combine different data types to form a new user define data type.

	

	Definition

	

	A structure is a collection of variable reference under one name providing a convincible means of related information together.

	

	Format: struct tag_name

	{

	data _type member1;

	data_type member2;

	};

	

	here a keyboard struct declares a structes to hold the details of field of different data types.

	

	Example:

	struct addr

	{

	char name [30];

	char city [15];

	int pincode ;

	};

	

	Creating Structure variable

	

	structure can be created in two ways:

	

	1. declaration using tagname anywhere in the program.

	

	Example:

	

	struct book

	{

	char name [30];

	char author [25];

	float price;

	};

	struct book book1 book2

	

	2. it is also allowed to combine structure declaration and variable declaration in one statement.

	

	example:

	

	struct person

	{

	char *name;

	int age;

	char*address;

	};

	p1,p2,p3

	

	while declaring structure variable along with their definition, the use of tag-name is optional.

	

	Struct

	{

	char *name;

	int age;

	char * address;

	}

	p1,p2,p3

	

	Image showing how the given value allocate in structure with the help of an example >

	

	[image: image44.png]struct date

int month;
int day;
int year;
5

struct date birthday;

bithday. =11; montn [1

birthday. = 25; day | 25

birthday. =1965; | 195
birthday

printf ("%i °, bithday. ~);
printf ("%i *, birthday.);
printf ("%i", birthday.),

11 25 1965

	

	Giving values to member

	

	The link between a member and a variable is established using member operator `.' to dot operator.

	

	An example program to define a structure and assign value to members:

	

	[image: image45.png]STRUCTUR.C

struct book

char#name;
int page;
char¥author;

void main()
{

struct book bl
printfC"\n entér value

scanf(’ - - ,bl.name,8hl.page,bl.author);
printf(. ,bl.name,bl.page,bl.author);

getchO:

	

	Out put of the program

	

	[image: image46.png]S Yurbo Ces IDE

	

	
Structure Initialization

	

	a structure variable can be initialization as any other data type.

	

	Main()

	{

	static struct

	{

	int weight;

	float height;

	}

	}

	student{560,080,75};

	

	This assign the value 60 to student weight and 180.75 student height. there is a one to one correspondents between the members and their initializing values.

	

	The following statements initialize two structures variables:

	

	Main()

	Struct st_decord

	{

	int weight;

	float height;

	}

	static struct st_record student2={53, 170,60}

	}

	

	another method is to initlialize a structure variable outside the function.

	

	Struct st_record/* No static word*/

	{

	int weight;

	int height

	}

	student={60,50,75}

	}

	main()

	{

	static struct st_record student2={53,170,60}

	}

	

	

	Comparison of structure variables

	

	Two variables of the same structure type can be compared the same way as ordinary variables.

	

	operation meaning

	

	person1=person2*assign perosn2 to person1

	

	person1== person2*compare all name of person1 and person2 and return1

	

	

	

	Arrays of structures

	

	The most common use of structures is in arrays of structures. To declare an array of structures, first the structure is defined then an array variable of that structure is declared.

	

	E.g.: struct class student [100];

	

	It defines an array called student which consists of 100 elements of structure named class.

	

	Ans is stored inside the memory in the same way as a multidimensional array example program.

	

	To implements on array of structures.

	

	

	Arrays with in structures

	

	Single as multidimensional arrays of type int as float can be defined as structure members.

	Example:

	struct marks

	{

	int number;

	float subject[3];

	}

	student [2];

	

	Here the member subject contains three elements, subject[0], subject[1] and subject[2]there elements can be accessed using appropriate subscript.

	

	For instance, the name student [1] student [2]; would refer to the marks obtained in the third subject by the secured student.

	

	

	Structures with in structures

	

	Structures within a structure means nesting of structures.

	

	Example:

	

	struct salary

	{

	char name [20];

	char department [10];

	int basic-pay;

	int dearness-allowance;

	int huse_rent_allowance;

	int city_allowance;

	}

	employee;

	

	This structure defines name, department, basic pay and three kinds of allowances.

	

	All the items related to allowance can be grouped together and declared under a sub-stricture. As shown below, strut salary

	

	{

	char name []2;

	char department [10];

	struct;

	}

	int dearness;

	int house_rent;

	int city;

	[allowance;

	}

	employee's;

	

	The salary structure contains a member named allowance which use is a structures with.

	

	Three members. Now ; the member compared in the inner structure;, namely, ;dearness,house_rent and city can ;be left to as;

	

	employee. ;allowance. Dearness

	employee. Allowance. House_rent

	employee allowance. city

	

	The inner most member in a nested structure can be accessed by chaining all the concerned structure variables (from outermost to inner most) with the member using dot operator.

	

	

	

	Passing structure to function

	

	There are three methods by which the values of structure can be transferred from one function to another:

	

	1. The first method is to pass each member of the structure as an actual argument of the function call.

	

	The actual argument is then treated independently like ordinary variables.

	

	2. The second methods involve passing of a copy of the entire structure to the called function

	

	Since the function is working on a copy of the entire structure to the called function, changes are not reflected in the original structure (in the calling function).

	

	It is necessary for the entire function to return the entire structure back to the calling function.

	

	3. The third approach employs a concept called pointers to pass the structure as an argument .

	

	In this case, the address location of the structure is passed to the called function.

	

	The function can access indirectly the entire structure and work on it.

	

	The general format of sending a copy of structure to the called function is:

	

	function_name (structure_variable_name

	Union

	

	Introduction

	

	Union are derived data types, the way structure are. Though, unions and structures look alike, and there is a fundamental difference.

	

	While structure enables you to create a number of different variables stored in difference places in memory, unions enable you to treat the same space as a number of different variables

	

	Union-Definition and Declaration

	

	Unions, like structures, contain members whose individual data types may differ from one another.

	

	However, the members within a union all share the some storage space within the computer's memory, whereas each member within a structure is assigned its own unique storage area.

	

	Thus, unions are used to conserve memory.

	

	They are useful for applications involving multiple members, where values need not be assigned to all of the members at any one time.

	

	Within a union, the bookkeeping required to store members whose data types are different (having different memory requirements) is handled automatically to the compiler.

	

	However, the user must keep track of what type of information is stored at any given time.

	

	An attempt to access the wrong type of information will produce meaningless results. In general terms, the composition of a union may be defined as:

	

	Union tag

	{

	Member 1;

	Member 2;

	…..

	member n;

	};

	

	Where union is required keyword and the other terms have the same meaning as in a structure definition.

	

	Individual union variables can then be declared as:

	storage-class union tag variable 1, variable 2, . . . , variable n;

	

	Where storage-class is an optional storage class specified, union is a required keyword, tag is the name that appears in the union definition, and variable 1, variable 2, . . . , variable n are union.

	

	The two declarations may be combined, just as we did with structures. Thus, we can writeStorage-class union tag

	

	{

	Member 1;

	Member 2;

	member n;

	}

	

	The tag is optional in this type of declaration.

	

	Notice that the union and structure declarations are external to the program functions, but the structure variable is defined locally within each function.

	

	Accessing a union member

	

	To access a union member, you can use the same syntax that you use for structure members.

	

	Example:

	

	code.m, code.x etc.

	

	During execution, we should make sure that the value of accessing member is currently stored.

	

	

	Initialization of Union variable

	

	A union variable can be initialized , provided its storage class is either external or static.

	

	Only one member of a union can be assigned a value at any one time.

	

	The initialization value is assigned to the first member within the union.

	

	An example program to demonstrate initialization of union variables:

	

	[image: image47.png]FincTudestaro o}
léinciude<conio
yoid main®

union id

char_color[12];
int size;

st;ﬂc(clothes

char manufacture[20];
Float cost;
union 1d description;
static struct clothes shirts{ = ,25.50,
cIrscr();
printfC ' sizeof(union id));
T s e ey
printf¢
Getch();
¥

T eacrap tion colon, Shirt.description.sized;

	

	Uses of Union

	

	Union, like structure, contain members whose individual data type may differ to each other.

	

	But the members that compose a union share the same storage area within the computer's memory, whereas each member within a structure is assigned its own unique storage area.

	

	Thus, union are used to conserve memory.

	

	1. Unions are useful for application involving multiple members, where value need not to be assigned to all of the members at any one time.

	

	2. Unions are useful whenever there is a requirement to access the same memory location in more than one way. etc.

	

	

	Dynamic Data Structure

	

	Linked list

	

	Before talking about the different mechanism of data structure we will take a short view ofDMA (Dynamic Memory Allocation).

	

	DMA: C language requires the number of elements in an array to be specified at compile time.

	

	But it is not practically possible with Array.

	

	In array we allocate the memory first and then start using it.

	

	This may result in failure of a program or wastage of memory space.

	

	The concept of dynamic memory allocation can be used to eradicate this problem.

	

	In this technique , the allocation of memory is done at run time.

	

	C language provides four library function known as memory management function that can be used for allocating and freeing memory during program execution.

	

	These are:

	

	malloc: allocate memory and return a pointer to the first byte of allocated space.

	

	Example:

	

	ptr=(cast.type*)malloc(byte_size);

	

	calloc: allocates the memory spaces, initialize them to zero and returns pointer to first byte.

	

	Example:

	

	ptr=(cast_type*)calloc(n.elem_size);

	

	free: frees previously allocated space.

	

	Example:

	

	free(ptr);

	

	realloc: modifies the size of previously assigned space

	

	Example:

	

	ptr=realloc(ptr,newsize);

	

	We studied about Array there we can observe one major disadvantage of Array is ,if an array is not filled by value, then memory will be locked up.

	

	To overcome this problem we use Linked lists and other data structure mechanism.

	

	Linked List are a way to store data with structures so that the programmer can automatically create a new place to store data whenever necessary.

	

	Specifically, the programmer writes a struct definition that contains variables holding information about something, and then has a pointer to a struct of its type.

	

	Each of these individual struct in the list is known as a node.

	

	Think of it like a train. The programmer always stores the first node of the list. This would be the engine of the train.

	

	The pointer is the connector between cars of the train.

	

	Every time the train add a car, it uses the connectors to add a new car.

	

	This is like a programmer using the keyword new to create a pointer to a new struct

	

	In memory it is often described as looking like this:

	

	---------- ----------

	- Data - >- Data ->

	---------- - ----------

	- Pointer- - - - Pointer-

	---------- ----------

	

	Stack

	

	A stack is a data structure that resembles a stack of trays in a spring loaded bin.

	

	A tray will be added to the bin on top of the stack. When you add a tray, the previous one on top will go down by one position.

	

	You can add trays till the first trays reach the bottom of the stack. Similarly, a tray can be removed only from the top of the stack.

	

	In the computer science item is nothing but a data element or an object.

	

	Therefore a stack is a list in which items are added, deleted or examined at one only one end.

	

	The size of the stack is defined by the user before compilation and hence this is a static data structure.

	

	It adopts LIFO (last in first out) methodology for storage and retrieval.

	

	Queue

	

	Queue is also a list. Here, the data items are added at one end and removed from the other hand work as first in first out for storage and retrieval.

	

	Queues are used extensively in operating systems to keep track of user waiting for resources such as CPU, printing etc.

	

	It adopts FIFO(first in first out)methodology for storage and retrieval.

	

	

	

	Data File Handling through C

	

	Introduction

	

	Many applications require that information be written to or read from an auxiliary memory.

	

	Such information is stored on the memory device in the form of a data file.

	

	Thus files allow us to store information permanently, and to access and alter that information whenever necessary.

	

	In C, an extensive set of library; functions is available for creating and processing data files. Unlike other files.

	

	However, there are two different types of data files

	

	1. Stream-oriented (or standard) data files:

	

	Stream oriented data files are generally easier to work with and are therefore more commonly used.

	

	Stream-oriented data files can be subdivided into two categories.

	

	The first category are text files, consisting of consecutive characters. There characters can be interpreted as individual data items, or as components of strings or numbers.

	

	2. System-oriented (or low level) data files:

	

	System-oriented data files, often referred to as unformatted data files, organizes structures, such as arrays and structures.

	

	A separate set of library functions is available for processing stream-oriented data files of this type.

	

	These library functions provide single instructions that can transfer entire arrays or structures to or from data files.

	

	Note: Library function has been discussed in detail in next section.

	

	

	

	

	

	

	

	File operation

	

	There are two distinct ways to perform the file operation in C:

	

	1. Low level I/O operation (it uses UNIX system call therefore we won't discuss here)

	

	2. High level I/O operation (it uses function in C's Standard I/O library)

	

	List of I/O function with their operation:

	

	fopen()

creates a new file for use or opens an existing file for use.

fclose()
close a file which has been opened for use.

getc()
reads a character to a file.

putc()
writes a character to a line.

fprintf()
writes a set of data values to a file.

fscanf()
reads a set of data values from a file.

getw()
reads an integer from a file.

putw()

writes an integer to a file.

feof()
test for an end of file condition.

	

	

	

	

	

	

	

	Opening & closing a data file

	

	When working with a stream-oriented data file, the first step is to establish a buffer area (a holt station for data processing) where information is temporarily stored while being transferred between the computer's memory and the data file.

	

	This buffer area allows information to be read from or written to the data file more readily than would otherwise be possible. The buffer area is established by writing

	

	FILE * ptvar;

	

	Where FILE (uppercase letter required) is a special structure type that establishes thebuffer area, and ptvar is a pointer variable that indicates the beginning of the buffer area.

	

	The structure type FILE is defined within a system include file, typically stdio.h. The pointerptvar is often referred to as a stream pointer, or simply a stream.

	

	A data file must be opened before it can be created or processed. This associates the file name with the buffer area (i.e., with the stream).

	

	It also specifies how the data file will be utilized, i.e., as a read-only file, a write -only file, or a read/write file, in which both operations are permitted.

	

	The library function open is used to open a file. This function is typically written as Ptvar =open (file-name, file-type)

	

	Where file-name and file-type are strings that represent the name of the data file and the manner in which the data file will be utilized.

	

	The name chosen for the file-name must be consistent with the rules for naming files, as determined by the computer's operating system.

	

	The file-type must be one of the strings shown:

	

	"r"
Open an existing file for reading only.

"w"
Open a new file for writing only. If a file with the specified filename currently exists, it will be destroyed and a new file will be created in its place.

"a"
Open an existing file for appending. A new file will be created if the file with the specified file-name don't exists.

"r+"
open an existing file for both reading and writing

"w+"
Open an existing file for both reading and writing. If a file with the specified file name currently exists, it will be destroyed and a new file created in its place

"a+"
Open an existing file for both reading and appending. A new file will be created if the file with the specified file-name does not exists.

	

	

	

	

	

	

	

	Creating a data file

	

	A data file must be created before it can be processed.

	

	A stream-oriented data file can be created in two ways. One is to create the file directly, using a text editor or a word processor.

	

	The other is to write a program that enters information into the computer and than writes it out to the data file.

	

	Unformatted data files can only be created with such specially written programs.

	

	Example:

	

	Reading a data file-

	

	The following program will read a line of text from a data file on a character by character basis, and display the text on the screen.

	

	The program makes use of the library functions get and putchar to read and display the data.

	

	An example program to read a line of text from a data file and display it on the screen:

	

	[image: image51.png]FILE.C

lvoid main()
{

char ¢;
FILE *fpt; /“define a pointer to predefined structure type FILE */

=snuLL)

iF ((fptafopen(' 1o,

/*open the data file for reading only*/
PrANtFC\AERROR ~cannon spen e dessgnated File\n™d;

€1se /* read and display each character fron the data file */

do
Butchar (csgetc(for);

while (cla)
/*close the data file"/
felose(fpr);
getch();

33

	

	Data file consisting entirely of strings can often be created and read more casually with programs that utilize special string-oriented library functions.

	

	Some commonly used functions of this type are gets, puts, fgets and fputs.

	

	The functions gets and puts read or write strings to or from the standard output devices, whereas fgets and fputs exchange strings with data files.

	

	

	

	

	

	

	

	Processing a data file

	

	Most data file applications require that a data file be altered as it is being processed.

	

	For example, in an application involving the processing of customer records, it may be desirable to add new records to the file there requirements in turn suggest several different computational strategies.

	

	Another approach is to work with two different data files- an old file and a new file. Each record is read from the old file, updated as necessary, and then written to the new file.

	

	When all of the records have been updated, the old file is deleted or placed into archival storage and the new file renamed. Hence, the new file become the struck for the next round of updates.

	

	Historically, the origin of this method goes back to the early days of computing, when data files were maintained on magnetic tapes. The method is still used, however, because it provides a series of old source.

	

	File that can be used to generate a customer history. The most recent source file can also be used to recreate the current file if the current file is damaged or destroyed.

	

	

	

	

	

	

	

	Unformatted data file

	

	Some applications involve the use of data files to store block of data, where each block consists of a fixed number of contiguous bytes.

	

	Each block will generally represent a complex data structure, such as a structure or an array.

	

	For example, a data file may consist of multiple structures having the same composition, or it may contain multiple arrays of the same type and size.

	

	For such applicators it may be desirable to read the entire block from the data, or write the entire block to the data file, rather than reading or writing the individual components (i.e., structure members of array elements) within each block separately.

	

	The library functions fread and fwrite are intended to be used in situations of this type.

	

	There functions are often referred to as unformatted read and write functions. Similarly, data files of this type are often referred to as unformatted data file.

	

	Each of these functions requires four arguments: a pointer to the data block, the size of the data block, the number of data blocks being transferred, and the stream pointer.

	

	Thus, a typical fwrite function might be written as: fwrite(&customer, sizeof(record), 1, fpt);

	

	Where customer is a structure variable of type record, and fpt is the stream pointer associated with a data file that has been opened for output.

	

	An example program to create an unformatted data file containing customer records:

	

	[image: image52.png]] UNFORMAT.C
/"create an unformatted data file containing customer records +/|
nclude<stdio. h>)

nclude<ctype.h>|
[rinclude<alToc.h>)

int month;
int day;
int year;

EYpedef struct

char name [$0];
char city [80]}
char street [30];
int acct_no;
char_accT_type;
float oldbalance;
float newbalance;
float_payment;
date lastpayment;
}record;

void main()
{

record dradscreen (record customer);
FILE *fpt;

	

	Reading file:

	

	Displaying the contents:

	

	

	

	

	C Preprocessor & Macro

	

	Introduction

	

	The C preprocessor is a tool which filters your source code before it is compiled.

	

	The preprocessor allows constants to be named using the # notation.

	

	The preprocessor provides several other facilities which will be described here.

	

	It is particularly useful for selecting machine dependent pieces of code for different computer types, allowing a single program to be compiled and run on several different computers.

	

	The C preprocessor isn't restricted to use with C programs only. Programmers who use other languages may also find it useful, however it is tuned to recognize features of the C language like comments and strings, so its use may be restricted in other circumstances.

	

	Set of commonly used Preprocessor Directives and their Functions:

	

	#define

defines a macro substitution.

#undef
undefined a macro.

#include
specifies the files to be include.

#ifdef
tests for a macro definition

#ifndef
tests whether a macro is not defined.

#if

tests a compile-time condition.

#endif

specifies the end of #if.

#else
specifies alternatives when #if test fails.

	

	These Preprocessor or directives can be divided into three categories:

	

	1. Macro Substitution Directives

	2. File Inclusion Directives

	3. Compiler Control Directives

	

	

	

	

	

	

	

	Macro substitution directives

	

	We have already met this facility, in its simplest form it allows us to define textual substitutions using #define statement.

	

	The #define statement can be used for more, however, than simply defining symbolic constants.

	

	In particular, it can be used to define macros; its, single identifiers that are equivalent to expressions, complete statement or groups of statements. Macros resemble function in this sense.

	

	They are defined in an altogether different manner than functions, however, and they are treated differently during the compilation process.

	

	Format: #define identifier string

	

	e.g.: #define MAXSIZE 256

	

	This will lead to the value 256 being substituted for each occurrence of the word MAXSIZE in the file.

	

	Example:

	

	[image: image53.png]void main()
{

int length, width;

printf(in Enter length
scanf(" ,&length);
printf("\n’Enter wideh = "
scanf(™ 1, &width);
printf(S =0, area);
getch();

1:1 —

	

	Out put of the program

	

	[image: image54.png]BS Tuba Lx INEY

Enter length = 4
3

Enter width

area =24_

	

	This program contains the macro area, which represents the expression length* width.

	

	When the program is compiled, the expression length * width will replace the identifier area within the printf statement, so that printf statement will become

	

	Printf("\narea =%d", length *width);

	

	Note that the format string " \n area =%d" is unaffected by the #define statement.

	

	When the program is executed, the values for length and width are entered interactively from the keyboard, and the corresponding value for area is displayed.

	

	A typical interactive session is shown below. The user's responses are underlined, as usual.

	

	Length =_3

	Width =_4

	Area=12

	

	Macro definitions are customarily placed at the beginning of a file, ahead of the first function definition.

	

	The scope of a macro definition extends from its point of definition to the end of the file. However, a macro defined in one file is not recognized within another file.

	

	Multilane macros can be defined by placing a backward slash (\) the end of each line except the last.

	

	This feature permits a single macro (i.e. a single identifier) to represent a compound statement.

	

	Here is another simple c program that contains multilane macro:

	

	[image: image55.png]void main()
{

Ine count, Tines, n;

printf(");
Toop
getch();

8:15 —

	

	Out put of the program

	

	[image: image56.png]

	

	Macros are sometimes used in place of functions within a program.

	

	The use of a macro in place of a function eliminates the time delays associated with function calls.

	

	If a program contains many reported function calls, the time savings resulting from the use of macros can become significant.

	

	On the other hand, macro substitution will take place whenever a reference to a macro appears within a program.

	

	Thus, a program that contains several references to the same macro may become unreasonably long. We therefore face a tradeoff between execution speed and size of the compiled object program.

	

	The use of a macro is most advantageous in applications where there are relatively few functions calls but the function is called repeatedly.

	

	Using #define to Create Functional Macros

	

	#define can also be given arguments which are used in its replacement. The definitions are then called macros.

	

	Macros work rather like functions, but with the following minor differences.

	

	Since macros are implemented as a textual substitution, there is no effect on program performance (as with functions).

	

	Recursive macros are generally not a good idea.

	

	Macros don't care about the type of their arguments. Hence macros are a good choice where we might want to operate on reals, integers or a mixture of the two.

	

	Macros are full of traps for the unwary programmer. In particular the textual substitution means that arithmetic expressions are liable to be corrupted by the order of evaluation rules.

	

	Here is an example of a macro which won't work:

	

	#define DOUBLE(x) x+x

	

	Now if we have a statement

	

	a = DOUBLE(b) * c;

	

	This will be expanded to

	

	a = b+b * c;

	

	And since * has a higher priority than +, the compiler will treat it as.

	

	a = b + (b * c);

	

	The problem can be solved using a more robust definition of DOUBLE

	

	#define DOUBLE(x) (x+x)

	

	Here the brackets around the definition force the expression to be evaluated before any surrounding operators are applied. This should make the macro more reliable.

	

	In general it is better to write a C function than risk using a macro.

	

	

	

	

	

	

	

	File inclusion

	

	The preprocessor directive #include is an instruction to read in the entire contents of another file at that point.

	

	This is generally used to read in header files for library functions. Header files contain details of functions and types used within the library.

	

	It must be included before the program can make use of the library functions.

	

	Library header file names are enclosed in angle brackets, < >. These tell the preprocessorto look for the header file in the standard location for library definitions.

	

	Example: #include

	

	another use for #include for the programmer is where multi-file programs are being written.

	

	Certain information is required at the beginning of each program file. This can be put into a file called globals.h and included in each program file.

	

	Local header file names are usually enclosed by double quotes, " ". It is conventional to give header files a name which ends in .h to distinguish them from other types of file.

	

	Our globals.h file would be included by the following line. #include "globals.h"

	

	

	

	

	

	

	

	Compiler control directive

	

	The C Preprocessor offer a feature known as conditional compilation, which can be used to switch on or off a particular line or group of lines in a program.

	

	This is achieved by the inserting #ifdef or #endif.

	

	Conditional selection of code using #ifdef,#endif.

	

	The preprocessor has a conditional statement similar to' C's if else.

	

	It can be used to selectively include statements in a program. This is often used where two different computer types implement a feature in different ways. It allows the programmer to produce a program which will run on either type.

	

	The keywords for conditional selection are; #ifdef, #else and #endif. #ifdef

	

	takes a name as an argument, and returns true if the name has a current definition. The name may be defined using a #define, the -d option of the compiler.

	

	#else

	

	is optional and ends the block beginning with #ifdef. It is used to create a 2 way optional selection.

	

	#endif

	

	ends the block started by #ifdef or #else.

	

	Where the #ifdef is true, statements between it and a following #else or #endif are included in the program.

	

	Where it is false, and there is a following #else, statements between the #else and the following #endif are included.

	

	This is best illustrated by an example.

	

	Using #ifdef for Different Computer Types

	

	Conditional selection is rarely performed using #defined values. A simple application using machine dependent values is illustrated below:

	

	[image: image57.png]1)
ncludecstazo. ml
ncludeceonio)

void waind

clrser();
cAntt(\ithis s 0 vodi);
Mrimf%“"\nlhis s sua");

g™ o Wie 4o foukath;

EintE("\a tupe not definedia”);
getch():
)

	

	Out put of the program

	

	[image: image58.png]type not defined

	

	Note: sun is defined automatically on SUN computers. vax is defined automatically on VAX computers. ibm is defined automatically on IBM pc's else type not defined message will be displayed (different types of computer)

	

	Using #ifdef to Temporarily Remove Program Statements

	

	#ifdef also provides a useful means of temporarily "blanking out" lines of a program.

	

	The lines in question are preceded by #ifdef NEVER and followed by #endif. Of course you should ensure that the name NEVER isn't defined anywhere.

	

	Command line parameter of C

	

	Command line parameter

	

	You may have been wondering about the empty parentheses in the first line of the main function, i.e. main().

	

	The parentheses may contain special arguments that allow parameters to be passed to main from the operating system.

	

	Most versions of C permit two such arguments, which are traditionally called argc and argv, respectively.

	

	The first of these, argc, must be an integer variable, while the second, argv, is an array of pointers of characters; i.e., an array of strings.

	

	Each string in this array will represent a parameter that is passed to main. The value ofargc will indicate the number of parameters passed.

	

	Example: The following outline indicates how the arguments argc and argv are defined within main.

	

	Vod main(int argc, char *argv[])

	{

	}

	

	The first line can be written without the keyword void, i.e.,

	

	main(int argc, char *argv[])

	

	A program is normally executed by specifying the name of the program within a menu-driven environment.

	

	Some compilers also allow a program to be executed by specifying the name of the program (actually, the name of the file containing the compiled object program) at the operating system level.

	

	The program name is then interpreted as an operating system command. Hence, the line in which its appears is generally referred to as a command line.

	

	In order to pass one or more parameters to the program when it is executed from the operating system, the parameters must follow the program name on the command line.

	

	E.g.: Program-name parameter 1 parameter 2 . . . parameter n

	

	The individual items must be separated from one another either by blank spaces or by tabs.

	

	Some operating systems permits blank spaces to be included within a parameter provided the entire parameter is enclosed in quotation marks.

	

	The program name will be stored as the first item in argv, followed by each of the parameters. Hence, if the program name is followed by n parameters.

	

	There will be (n+1) entries in argv, ranging from argv [0] to argv [n]. Moreover, argc will automatically be assigned the value (n+1).

	

	Note that the value for argc is not supplied explicitly from the command line.

	

	An example program which will be executed from a command line:

	

	[image: image59.png]‘COMMANDL . C

¥oid main(int arge, char *argv[l)

int count;
rser();
AntF(o o, arge);

for (count =0; count<argc;count++)
{

printf(o) < 1o, count, argv[countl);

	

	Out put of the program

	

	[image: image60.png]'S Tusbo Ces IDE 2]
= ol el B Els) Al
arge =1

argv[0] = COMMANDL. EXE

	

	This program allows an unspecified number of parameters to be entered from the command line.

	

	When the program is executed, the Count value for argc and the elements of argv will be displayed as separate lines of output.

	

	Sample red white blue

	

	then the program will be executed, resulting in the following output.

	

	argc =4

	argv [0]=sample.exe

	argv [1]=red

	argv [2]=white

	argv [3]=blue

	

	The output tells us that four separate items have been entered form the command line.

	

	The first is the program name, sample. exe, followed by the three parameters., red. White and blue.

	

	Each item is an element in the array argv. (Name that sample.exe is the name of the object file resulting from the compilation of the source code sample. C.)

	

	Similarly, if the command line is

	

	Sample red "white blue"

	

	The resulting output will be

	

	argc=3

	argv [0]=sample.exe

	argv [1]=red

	argv [2]=white blue

	

	In, this case the string "white blue" will be interpreted as a single parameter, because of the quotation marks.

	

	Once the parameters have been entered, they can be utilized within the program in any desired manner.

	

	One particularly common application is to specify the names of data files as command line parameter.

	

	

	

	

	

	Header file

	

	Introduction

	

	The C provides a large number of C functions as libraries. Some of these implement frequently used operations, while others are very specialized in their application.

	

	Wise programmers will check whether a library function is available to perform a task before writing their own version.

	

	This will reduce program development time. The library functions have been tested, so they are more likely to be correct than any function which the programmer might write.

	

	This will save time when debugging the program. For using these files ,certain files are needed to be included in the program which make call to these functions.

	

	These files are known as Header files and they contain macro definition ,type definition, and function declarations.

	

	These header files usually have an extension .h as stdio.h, ctype.h, string.h, math.h,stdlib.h, stdarg.h, time.h etc.

	

	

	

	

	

	Header file

	

	Use of library functions

	

	To use a function, ensure that you have made the required #includes in your C file. Then the function can be called as though you had defined it yourself.

	

	It is important to ensure that your arguments have the expected types; otherwise the function will probably produce strange results.

	

	Some libraries require extra options before the compiler can support their use.

	

	For example, to compile a program including functions from the math.h library the command might be cc mathprog.c -o mathprog –lm

	

	The final -lm is an instruction to link the maths library with the program. The manual page for each function will usually inform you if any special compiler flags are required.

	

	

	

	

	 Header file

	

	Some Useful library functions

	

	There is a vast collections of function .Some of them are grouped together and listed below.

	

	String Function:

	

	strcpy

copies one string into another.

strcat

appends one string to another.

strcmp
compare one string to another.

strcmpi
compare one string to another without case sensitive.

strlen
calculates the length of a string.

strrev
reserve a string.

	

	Mathematical Function:

	

	abs
returns absolute value of an integer.

sin
calculate the sine.

cos
calculate the arc cos.

tan
calculate the arc tangent.

acos
calculate the arc cosine.

asin
calculate the arc sine.

atan
calculate the arc tangent.

ceil
rounds up.

floor
rounds down.

log
calculate the natural logarithm of x.

pow
calculate x to the power of y.

sqrt
calculate the positive square root of input value.

	

	Date & Time Function:

	

	asctime
converts date and time to ASCII.

clock
determine process time.

getdate
gets system date

gettime
gets system time.

setdate
sets DOS date

settime
sets system time.

time

gets time of day.

	

	Utility Function:

	

	abort()
abnormally terminates a process.

bsearch()
binary search of an array.

tolower()
translate character to lower case.

toupper()
translate character to upper case.

qsort()
sorting using the quick sort algorithm.

exit()
terminate execution of a program.

free()
frees allocated block.

	

	Character Class Test Functions:

	

	isupper()
check and returns non-zero if c is an upper case letter (A-Z).

islower()
check and returns non-zero if c is a lower case letter (a-z).

isspace(()
check and returns non-zero if c is a space tab, carriage return, newline, vertical tab, form feed etc.

isascii()
tests whether a character is an ASCII (0 to 127) character.

isalpha()
check and returns non-zero if c is a letter (A-Z or a-z).

iscntrl()
tests whether a character is a control character.

toascii()
translate character to ASCII format.

tolower()
translate character to upper case.

	

	

	

	

	

