	How to open C program code window

	

	Before opening C on your computer. Please ensure that C compiler has been loaded or not. If not then please load it first and then try any of the following ways to open C which suit your computer setting.

	

	1.Start>>Program >> Turbo c.

	

	2. If turbo C icon is present on your computer desktop then simply click on it.

	

	3. My computer >>c:\>> tc (folder)>> bin (folder) >> tc.exe (icon).

	

	4. Or make sure the path where you have loaded the C on your computer and try to run it from there.

	

	After following the above instructions the screen which is given below will appear on your desktop:

	

	[image: image1.png]

	

	Description of C code window

	

	[image: image2.png]

	

	1. =: Interface to external programs.

	

	2. File: File related option such as opening and saving file.

	

	3. Edit: Cut,Copy,Paste operation.

	

	4. Search: Find,Find & Replace operation.

	

	5. Run: Compile and run the file currently loaded in the text editor. And debugging such as setting/clearing trace points can be performed from this menu.

	

	6. Compile: The menu item compiles a source file to an object file or an .exe file.

	

	7. Debug: Provides interactive debugging. Variables can be examined/set/cleared, and we can watch variables change during execution.

	

	8. Project: This menu item controls Borland C++'s handling of large programs that are in multiple source file.

	

	9. Option: Default option are set during installation . The user can change any option at any time through this menu.

	

	10. Windows: Windows operation include zoom, arranging windows on the screen , and closing windows.

	

	11. Help: Borland C++ includes a context sensitive help capability. Select Help or press f1for general Help, Shift f1 for indexed help or Ctrl f1 for context sensitive help.

	

	

	The components of C language

	

	There are five main component of C language are:

	

	1. The character set: Any alphabet ,digit or special symbol ,used to represent information is denoted by character. The character in C are grouped into four categories.

	

	1

Letters

A...Z and a...z

2

Digits

0,1,2,.....9

3

Special Symbol

~,`,!,@,#,$,%,^,&,*,(),.,<,>,?,/,",:,;,{},[]

4

White Space

blank space, Carriage return, form feed, newline, horizontal tab

	

	2. The data types: The power of the programming language depends, among other thing, on the range of different types of data it can handle.

	

	3. Constants: A constant is a fix value that doesn't change while program execution.

	

	4. Variable: A variable is an entity whose value can change during program execution.

	

	5. Keywords: Keywords are those word which have been assigned specific meaning in C language. Keywords should not be used as variable names to avoid problem.

	

	Note: Above given all the term has been discussed in details in next section.

	

	Structure of C Program

	

	Every C program is made of function and every function consist of instructions called statement.

	

	Structure of C Program.

	

	#include //stdio.h is the header file

	main() // main function is the first function which is executed by a C program.

	

	All C statements are written within main function.

	{

	

	// All C statements.

	

	}

	

	Functions

	

	Every C program consists of one or more modules called functions. One of the functions must be called main().

	The program will always begin by executing the main function, which may access other functions.

	

	Any other function definitions must be defined separately, either ahead of or after main.

	

	A function name is always followed by a pair of parenthesis, namely, (). And all function statements are enclosed within a pair of braces { }.

	

	The program execution always starts with main function. When the closing brace of the main function is reached, program execution stops, and the control is handed back to the OS (Operating System).

	

	Statements

	

	Single C language instruction is called a statement. Statements are written according to the grammar of C language. Every C language statement must ends with semicolon(;).

	

	In order to write a C program we should follow some basic rules which are described below:

	

	a) Usually all statements in C are entered in small alphabets.

	

	b) Blank spaces may be inserted between two words to improve the program readability. However no blank spaces are allowed within a variables, constants or key words.

	

	c) It has no specific rules for the position at which statements is to be retained that's why it’s often called a free form language.

	

	d) All C statements must end with a semicolon (;)

	

	Till now, We have very little knowledge about the type of variables, constants and keywords. Now we would try to understand the simple C program.

	

	A sample of C language program

	

	Example of C program to calculate area of circle:

	

	[image: image3.png]'S Turbo C++ IDE IS [=]]

[1]|——— AREA_CIR.C

v?id main()

getch();
}

	

	Explanation of above program :

	

	# is the preprocessor directive which commands that the content of file should be included at the time of compilation.

	

	< stdio.h> is the header file which contains all input and output functions like scanf(), printf() which are frequently used in c programs.

	

	main() is the first function which is executed by a C program.

	

	1. int a,r=5; -> This statement declares 2 variables a and r of type integer and r has been assigned a value of 5.

	

	2. const pi=3.14; -> This statement declares pi as constant and value 3.14 has been assigned to it.

	

	3. a = pi * r *r; -> This statement computes the area of circle and assign it to variable a

	

	4. printf("%f",a); -> This statement prints the area of circle using printf function.

	

	5. getch(); -> It is used to get character from user.

	

	Note: /* Any thing written within it is consider as comment statements. */

	

	For Animated Presentation(With Voice) Click here

	

	The C character set

	

	C uses the uppercase letter A to Z, the lowercase letters a to z, the digits 0 to 9, and certain special characters as building blocks to form basic program elements (e.g., constants, variables, operators, expressions, etc.).

	

	Some of the special characters are listed below:

	

	+

-

*

~

%

/

&

(

)

{

}

[

]

?

"

<

>

!

;

:

	

	Most versions of the language also allow certain other characters, such as @ and $, to be included within strings and comments.

	

	C uses certain combinations of these characters, such as \b,\n and \t, to represent special conditions such as backspace, new line, and horizontal tab, respectively

	These character combinations are known as escape sequences.

	

	Identifiers

	

	Identifiers are names that are given to various program elements, such as variable,functions and arrays.

	

	Identifiers consist of letters and digits, in any order, except that the first character must be a letter.;

	

	Both upper- and lowercase letters are permitted, though common usage favors the use of lowercase letters for most types of identifiers. Upper- and lowercase letters are not interchangeable.

	

	The underscore (_) character can also be included, and is considered to be a letter. An underscore is often used in the middle of an identifier.

	

	An identifier may also begin with an underscore, though this is rarely done in practice.

	

	The following names are valid identifiers:

	

	x

y12

sum_1

tax_rate

area

_temperature

	

	Key words

	

	There are certain reserved words, called keywords, which have standard, predefined meanings in C.

	

	These keywords can be used only for their intended purpose; they cannot be used as programmer-defined identifiers.

	

	Some standard keywords are:

	

	auto

extern

sizeof

break

floatn

static

case

for

char

	

	switch

register

return

long

int

else

while

short

void

	

	Some C compilers may recognize other keywords.

	

	Note that the keywords are all lowercase. Since uppercase and lowercase characters are not equivalent, it is possible to utilize an uppercase keyword as an identifier.

	

	Normally, however, this is not done, as it is considered a poor programming practice.

	

	

	Introduction

	

	To communicate with the computer, it is required to pass an appropriate value to the computer from the keyword.

	

	The value passed may be of different types, viz. Single character, integer, decimal, string.

	

	In each, the memory required is of different size. Such a defined type of value is called data type.

	

	C supports several different types of data, each of which may be represented differently within the computers memory.

	The memory requirement of each data type will determine the permissible range of values for that data type.

	

	C data type can be broadly divided in two categories:

	

	(a) Primary data types.

	(b) Secondary data types.

	

	Primary data types

	

	Primary data types are independent data types. It's not derived from other basic or secondary data types.

	

	There are five primary data types in C language:

	

	1. Void

	2. Character

	3. Integer

	4. Float

	5. Double

	

	Secondary data types

	

	Secondary data types are also called as derived data types. Secondary data types are derived from the basic data types.

	

	They are also five in number:

	

	1. Array

	2. Pointer

	3. Structure

	4. Union

	5. Enum

	

	Primary Data Type

	

	1. Void

	

	Description:

	Used to specify empty set containing no values.

	Storage Space: 0 byte.

	Format: (void).

	Range of values: ______.

	

	2. Character (Denoted as "char" in C programming language)

	

	Description:

	A character denotes any alphabet, digit or special symbol used to represent in formation and it is used to store a single character.

	Storage space: 1 byte

	Format: %c

	Range of Values: ASCII Character Set.

	

	3. Integer (Denoted as "int" in C programming language)

	

	Description:

	Integer type is used to store positive and negative integer.

	Storage space: 2 bytes.

	Format: %d

	Range of values: -327687 to +32767.

	

	4. Float

	

	Description:

	It is used to store real number, with single precision floating point number (precision of 6 digits after decimal points.)

	Storage space: 4 bytes.

	Format: %f

	Range of values: -3.4*1038 to +3.4*1038.

	

	5. Double

	

	Description:

	It stores real numbers with double precision. The use of double doesn't guarantee to double the number of significant digits in our result, but it improves the accuracy of the arithmetic and reduces the accumulation of rounding errors.

	Storage Space: 8 bytes.

	Format: %ld

	Range of values: -1.7*10308 to +1.7*10308.

	

	An example program of using basic data type:

	

	[image: image4.png]15 Al
earch Run

42 = g6 !

lprintf¢ *1 e character values are i, %ic \n", cl,2);
lprinte¢ <1 oo nteger walues are %id, 4d \n", &1,e33%
lprintf¢ 1 oo character values are fic,%¢ Yo', 31,121
printe¢ 1 o dnteger values are %% \n', 11,78);
getehs_

Next Msg re; Compile F9 Make Menu

	

	Output of the program:

	

	[image: image5.png]and c2 values are a, b
and ¢2 as integer values are 97, 98
and 12 as character values are A,B
and 12 as integer values are 65,46

	

	Explanation: Numeric data stored is stored in the memory in their binary form, while the character data has to be codified as a unique integer and that code number is stored in the internal storage.

	

	The integer equivalents of alphabets are:

	

	Lower case: a-z = 97 to 122

	Upper case: A-Z = 65 to 90

	

	In the above program when the characters are displayed in the integer format the corresponding ASCII code are displayed, similarly when integers are displayed in thecharacter format then equivalent character is displayed.

	

	

	Secondary Data Type

	

	1. Array:

	

	It is a collection of data of similar data type.

	e.g. Int num [5];

	

	Reserve a sequence of 5 location of two bytes each for storing integers.

	

	2. Pointer:

	

	Pointer is a variable that stores the address of some other variable.

	e.g. int *i;

	

	The above statement declares i as pointer to integer data type.

	

	3. Structure:

	

	A structure is a collection of data of different data types under one name.

	e.g.

	Struct employees

	{

	char Name[10];

	int Age;

	int Salary;

	}

	

	4. Union:

	

	It is a collection of data of different types sharing common memory space.

	e.g. Union item

	

	{

	int m;

	float x;

	char c;

	} ;

	

	5. Enumerated Data types:

	

	This data types gives us an opportunity to invent your own data type and define what values the variable of this data type can take.

	Example: enum colors

	

	{

	red, green, blue, cyan

	};

	colors foreground, background;

	

	Here the declaration has two parts:

	

	a) The first part declare the data type and specifies its possible values.

	b) The second part declare variable of this data type.

	

	Now we can give the values to these variables:

	

	foreground=red;

	background=blue;

	

	But remember we can't use values that aren't in the original declaration. Thus, the following declaration cause error.

	

	foreground=yellow;

	

	Note: Secondary data type has been given in detail later.

	

	Introduction

	

	The defined type of memory area where the value is stored is called variable.

	

	Variables are the data item whose values may vary during the execution of the program.

	

	A specific location or the address in the memory is allocated for each variable and the value of that variable is stored in that location.

	

	These locations may be integer, real or character etc.

	

	

	
Rules for constructing variables names

	

	There are some specific rules for constructing variable names in C language:

	

	(a) Variable name may be a combination of alphabet digits or underscores and its lengths should not exceed 8 characters, some compilers allow 40 characters also.

	

	(b) The first character must be an alphabet.

	

	(c) No comma, blank spaces are allowed in variable name.

	

	(d) No special symbols except underscore can be used as variable names.

	

	Variable declaration

	

	All the variables must be declared before their use. It does two things:

	

	(a) Tell the compiler what the variable name is.

	

	(b) Specify what type of data that a variable will hold.

	

	Syntax of variable declaration:

	

	data_type variable_name;

	

	Example of variable declaration:

	int i,j,k;

	char ch;

	

	Assigning values to variables

	

	To assign values to the variables, assignment operator (=) is used.

	

	Syntax of assigning values:

	

	variable declaration;

	Variable_name = value;

	

	Example of assigning values:

	

	Int i , j;

	j = 5 ;

	i = 0 ;

	

	It is also possible to assign a value at the time of declaration.

	e.g.

	int i = 5;

	

	More than one variable can be initialized in one statement using multiple assignment operators.

	

	e.g. j = m = 2;

	

	There could be an exception while using multiple assignment operators.

	

	e.g. int i , j = 2 , k;

	

	here the assignment will be i = 0 j=2 and k = garbage value

	

	An example program which shows the example of assignments:

	

	[image: image6.png]dit_search _Run_conpiler bd pEions_windoy

/+veciarations/
/#Deciaration and Assignnents/
¥ J+vectaration and miitiple Assigment/
prinfC oy - e Jeringing of valuest/

ib,c

b

Next Msg. Prev Msg o Make Menu.

	

	Output of the Program:

	

	[image: image7.png]var
a = 12803,

P=59q=5

	

	Scope of variables: LOcal & Global

	

	Scope of variable means where the variable stands in the program. All variables may not necessary be available to all statements in a program.

	

	Variables can have two types of scope:

	

	a) Local:

	

	When a variable is declared inside the function then such a variable is known as localvariable.

	

	A local variable can only be accessed by the function in which it is declared. It cannot be accessed by other function.

	

	b) Global:

	

	A variable which is declared outside all functions is known as global variable.

	

	A variable with a global scope is accessible to all the statements in the program. A globalvariable can be accessed by all the functions.

	

	Constants

	

	Introduction

	

	There are some values which do not change during the execution of the program. These values are called constants.

	Constants are of fixed value that remain unchanged during the execution of a program, and are used in assignment of statements. Constants are stored in variables.

	

	Syntax of constant declaration:

	

	Const datatype var_name = value;

	

	Example of Constant declaration:

	

	Const int a = 5;

	

	In C language there are five types of constants which has been described separately

	

	Character constants

	

	A character constant consists of a single digit or a single special symbol enclosed within a pair of single inverted commas. The maximum length of a character constant can be 1 character.

	

	e.g. --> 'a', 'i' , '5', '='.

	

	There are some character sequence constants which are used in C to represented special action, these are called C Escape Sequence.

	

	List of these escape sequence and its tasks are given below:

	

	\a : audible bell

	

	\f : form feed

	

	\r : carriage return

	

	\v : vertical tab

	

	\' : single quote

	

	\? : question mark

	

	\HHH: 1 to 3 digit hex value.

	

	\b : backspace

	

	\n : newline

	

	\t : horizontal tab

	

	\\ : backslash

	

	\" : double quote.

	

	\000 : 1 to 3 digit octal value

	

	Integer constants

	

	An integer constant refers to a sequence of digits. It could be either positive or negative. and must have at least one digit.

	

	It mustn't have a decimal point. No commas or blank are allowed within an integerconstant. The allowable range for integer constants is -32767 to 32767.

	

	There are three types of integer constants:

	

	1. decimal :

	

	In decimal notation ,simply we write decimal number. e.g. 24,678

	

	2. octal :

	

	In octal notation, write(0)immediately before the octal represention,e.g.-076,-076

	

	3. hexadecimal :

	

	In hexadecimal notation ,the constant is preceded by 0x,e.g.,0x3e,-0x3e.

	

	Some example of integer constants:

	

	: 426

	: +762

	: -8000

	: -7605

	

	

	Real constants

	

	Real constants are often called Floating Point constants.

	

	It has three parts:

	

	1. A sign (+ or -) preceding the number portion (optional).

	

	2. A number portion (representing the base).

	

	3. An exponent portion following the number portion (optional). This starts with E or E followed by an integer. The integer may be preceded by a sign.

	

	A real constant must have at least one digit. It must have a decimal point. It could be either positive (default) or negative. No commas and blank are allowed within a real constant.

	

	Some example of real constants:

	

	: +.72

	: +72

	: +7.6E+2

	: 24.4e-5

	

	

	

	Logical & String constants

	

	A logical constant can have either of two values either true or false. In C a non-zero value is always treated as true whereas zero is treated as false.

	

	The logical constants are very useful in evaluating logical expressions and complex condition.

	

	A group of character enclosed within a pair of double inverted commas (" ") is treated as astring constant.

	

	some example of string constant:

	

	: "Hello"

	"Welcome to eBiz"

	"a"

	C instruction set

	

	Introduction

	

	In previous section we discuss about various types of C constants, variables and keyword.

	

	Now in this section we will discuss about how they are grouped to from instructions.

	

	There are basically four types of instruction in C. which has been described separately.

	

	1. Type Declaration Instruction

	

	2. Input Output instruction

	

	3. Arithmetic Instructions

	

	4. Control Instructions

	

	ype Declaration & Input/Output Instructions

	

	This type of instruction is used to declare the type of variable being used in the program.

	

	Any variable used in the program must be declared before using it in any statement.

	

	This instruction is usually written at the beginning of the C program.

	

	Example:

	

	int a;

	float re,ad;

	char name ,des.

	

	Input Output instructions

	

	These instructions are used to supply input data to a program and obtain the outputresults from it.

	

	Example:

	

	printf(), scanf().

	Any variable used in the program must be declared before using it in any statement.

	

	This instruction is usually written at the beginning of the C program.

	

	Example:

	

	int a;

	float re,ad;

	char name ,des.

	

	Input Output instructions

	

	These instructions are used to supply input data to a program and obtain the outputresults from it.

	

	Example:

	

	printf(), scanf().

	

	Arithmetic Instructions

	

	These types of instructions are used to perform arithmetic operations between constantsand variables.

	

	Some of the arithmetic operators are: +, -, * and /.

	

	Example:

	

	int a;

	float b, deta, alpha, gamma, beta;

	a=500;

	b=0.0056;

	deta=alpha*beta/gamma+0.5*2/5;

	

	There are three types of arithmetic statements:

	

	1. Integer mode arithmetic statement:

	

	In this type of arithmetic statement all operands are either integer variable or integer constant.

	

	2. Real mode arithmetic statement:

	

	In this type of arithmetic statement all operands are either real constant or real variables.

	

	3. Mixed mode arithmetic statement:

	

	In this type of arithmetic statement some of the operands are integer and some of them are real.

	

	Control Instructions

	

	These types of instructions are used for controlling the sequence of execution of various statements in C program. It determines the 'flow of control' in a program.

	

	There are four types of control instructions in C:

	

	1. Sequence Control Instructions

	

	The sequence control instruction ensures that the instructions are executed in the same order in which they appear in the program.

	

	2. Selection or Decision Control Instructions

	

	These types of instruction allow the computer to take a decision.

	

	3. Case Control Instruction

	

	These types of instruction determine which instruction is to be executed next.

	

	4. Repetition or Loop Control Instruction

	

	The loop control instruction helps computer to execute a group of statements repeatedly.

	

	Operators

	

	Introduction

	

	An operator specifies an operation to be performed. C is rich in operator. Operators join the various variables and constants to from an expression.

	

	Some operator requires one operand and some require more than one operands.

	

	An operator is a symbol that tells the computer to perform certain mathematical or logical manipulation in data stored in variables.

	

	C is extremely rich in operators It has as many as 45 different operators.

	

	Arithmetic operators

	

	Arithmetic Operators are used to Arithmetical calculation.

	

	There are five Arithmetic operators in C:

	

	Operator

Purpose

+

Addition

-

Subtraction

*

Multiplication

/

Division

%

Remainder after integer division

	

	

	

	Relational operators

	

	Relational operators are used to compare two operands and to check whether they are equal, unequal, greater than and lesser than other.

	

	There are 6 relational operators:

	

	Operator

Meaning

<

Less than

>

Greater than

<=

Less than equal to

>=

Greater than equal to

==

Equal to

!=

Not equal to

	

	The value of the relational operator is either one or zero. If the relation is true, result is 1 otherwise it is 0.

	

	Logical operators

	

	Logical operators are used to combine two or more relational expressions.

	

	There are three logical operators:

	

	Operator

Meaning

&&

Logical And

||

Logical or

!

Logical not

	

	The expression which combines two or more relational expressions is termed as logical expression or compound relational expression.

	

	The result of a logical expression is either one or zero.

	

	Example:

	

	a) if (age > 50 && weight < 80)

	b) if (a < 0 || ch = = 'a')

	c) if (! (a < 0))

	Increment & Decrement operators

	

	These types of operators operate on only one operand, therefore these operators are also called Unary operators.

	

	These two powerful operators in C are + + (Increment), _ _ (Decrement). Operands must be declared as variables not a constant.

	

	These operators may be used either after or before the operand.

	When they are used before the operand, it is termed as Prefix while when they are used after the operand they are termed as Postfix.

	

	In prefix operations the value of operator is incremented or decremented first and then the expression is evaluated. Prefix operators has the effect of Change then use.

	

	In postfix operation the expression is evaluated first and then the value of operator is either incremented or decremented. Postfix operators has the effect of Use Then Change.

	

	e.g.: b=a++; this is postfix increment expression. In the expression firstly b=1; thena=a+1; will be executed ,

	

	while in prefix increment expression

	b=--a;

	

	firstly a =a-1;then b=a; will be executed.

	

	An example program clarifies the Postfix and Prefix operators:

	

	[image: image8.png]=103
Finclude<stdio:hol
#include<conio.

void main()
{

int b,a;

cIrscr(d;//to clear the output screen

2=10;

printf(in value of a before any operation”);

printf(- o ,a);

printf("\n value after prafix eperation”);

b = ++a * 5;//prefix

printf(0 La);

printf(. o - ,b);

printf("in value béfore postfix opsration’);
\n 2 = G)

® 5;//postfik

W Vallle aFter postfix operation “);

a = %l ,a);

b = %" b);

	

	Output of the program:

	

	[image: image9.png]value of a before any operation
a=10

Value after Prefix operation
a=11

b =55

value before Postfix operation
a=11
value after postfix operation
a=12
b =55

	

	

	Bitwise operators

	

	The smallest element in memory on which we are able to operate as yield is a byte; and we operate on it by use of the data type char Bitwise operator is used for manipulation of data at bit level.

	

	These operators are used for testing the bits, shifting them right to left. Bitwise operatormay not be applied to float or double data type.

	

	This is a powerful feature of C to manipulate a bit. The programmer can access and manipulate individual bits within a piece of data.

	

	Some of the bitwise operators in C are:

	

	Operator

Meaning

&

Bitwise Logical AND

|

Bitwise Logical OR

^

Bitwise Logical XOR

<<

Left Shift

>>

Right Shift

~

Once Compliment

	

	Conditional & ternary operators

	

	The conditional operator? and: are sometimes called ternary operators.

	

	A ternary operator is one which contains three operands.

	

	The general form of ternary operator is:

	

	exp 1 ? exp 2 : exp 3

	

	The operator works as, if exp 1 is evaluated first. If the result is true then exp 2 is executed, otherwise exp 3 is executed.

	

	A program of ternary operator:

	

	[image: image10.png]include<staio:
nclude<con
void main

int x,

drscr() //to clear the output screen
printf (“in Enter the value of xWn")i_
scanf(" ,&);

y=(x>5?3:4);

prwntf(":he value of y = %", y);

getch

	

	Output of the program:

	

	[image: image11.png]" Yurbo Co+ IDE (=0

= =] e) sls)

Enter the value of x
3

the value of y = 4_

	

	The comma operators

	

	This operator is used to link the related expression together the expression is separated by the, operator.

	

	An example program showing uses of comma operator:

	

	[image: image12.png]clrscrQ;

c=(a=1,b%2,a+b);

printf (\A the value of ¢ = %d",c);
getchQ;_

	

	Output of the program:

	

	[image: image13.png]7z =) il 6] 5165] Al

the value of ¢ = 3

	

	Here firstly value 1 is assigned to a, followed by this 2 is assigned to b, and then the result of a+b is assigned to c.

	

	The comma operator is often used in conjunction with a control statement called For.

	

	

	Size of operator

	

	The size of operator returns a number of bytes the operand occupies in memory. The operand may be a variable, a constant or a data type qualifier. It is a compile time operator.

	

	An example of size of operator:

	

	[image: image14.png]8 Tata Ce+ M

SIZE_OF_.C

clrscr(); //to clear the output screen
n=sizeof(int);
printf('the memory byte occupied by int=id”,nd;

getchQ);

	

	Output of size of operator:

	

	[image: image15.png]13 Twbe Cos IOE

the memory byte occupied by int=2_

	

	The output of the above program is 2 because int occupies two byte in memory.

	

	The size of operator is generally used to determine the length of entities called arrays and structures when their size is not known to the programmer.

	

	Assignment operator

	

	Assignment operators are used to assign the result of an expression to a variable. The most commonly used assignment operator is (=).

	

	eg: i=i+10;

	

	 i=i+10 is an assignment expression which assigns the value of i+10 to i.

	

	Expression like i=i+10, i=i-5, i=i*2 etc. can be rewritten using shorthand assignment operators.

	

	e.g.: i=i+5 is equivalent to i+=5

	 i=i*(y+1) is equivalent to i*=(y+1)

	

	Operator Precedence:

	

	While executing an arithmetic statement which has two or more operators, we may have some problems about how exactly does it get executed.

	

	To answer these questions satisfactorily we have to understand the precedence of operators.

	

	Precedence defines the sequence in which operators are to be applied on the operands. Operators of same precedence are evaluated from left to right or right to left, depending upon the level.

	

	This is known as associativity property of an operator.

	

	Summary of precedence of associativity is given below:

	

	Description

Operator

Associativity

Function Expression

()

Left to Right

Array Expression

[]

Left to Right
Structure Operator

->

Left to Right
Structure Operator

.

Left to Right

	

	Description

Operator

Associativity

Unary minus

-

Right to Left

Increment/Decrement

++/--

Right to Left
One's Compliment

~

Right to Left
Negation

!

Right to Left
Address of

&

Right to Left
Value at address

*

Right to Left
Type cast

(type)

Right to Left
Size in bytes

sizeof

Right to Left

	

	Description

Operator

Associativity

Multiplication

*

Left to Right

Division

/

Left to Right
Modulus

%

Left to Right
Addition

+

Left to Right
Subtraction

-

Left to Right

	

	Description

Operator

Associativity

Left Shift

<<

Left to Right

Right Shift

>>

Left to Right

	

	Description

Operator

Associativity

Less Than

<

Left to Right

Less Than Equal to

<=

Left to Right
Greater than

>

Left to Right
Greater than Equal to

>=

Left to Right

	

	Description

Operator

Associavity

Equal to

==

Left to Right
Not equal to

!=

Left to Right

	

	Description

Operator

Associavity

Bitwise AND

&

Left to Right
Bitwise XOR

^

Left to Right

	

	Description

Operator

Associavity

Bitwise OR

^

Left to Right

	

	Description

Operator

Associavity

Logical AND

&&

Left to Right
Logical OR

||

Left to Right

	

	Description

Operator

Associavity

Conditional

?:

Right to Left

	

	Description

Operator

Associavity

Assignment

=

Right to Left
Assignment
*= /= %=

Right to Left
Assignment
+= -= &=

Right to Left
Assignment
^= |=

Right to Left
Assignment
<<= >>=

Right to Left

	

	Description

Operator

Associavity

Comma

,

Right to Left

	

	Type modifier

	

	The basic data types may have modifier preceding them to indicate special properties of the object being declared.

	

	These modifiers change the meaning of the basic data types to suit the specific needs.

	

	These modifiers are unsigned, signed, long and short. It is also possible to give these modifiers in combination, e.g., unsigned long int.

	eg:-

	Modifier for char Data Type

	

	main()

	{

	char ch=291;

	printf("%d\t%c\n",ch,ch);

	}

	

	output:- 35

	

	Here ch has been defined as a char ,and char cannot take a value bigger than +128.That is why assigned value of ch is 291 and is considered to be 35 (291-128-128).

	

	Data type

Range

Bytes occupied
Format

signed char

-128 to +127

1

%c

unsigned char

0 to 255

1

%c

short signed int

-32768 to 32767

2

%d

short unsigned int

0 to 65535

2

%u

long signed int

-2147483648 to +2147483647

4

%ld

long unsigned int

0 to 4294967295

4

%lu

float

-3.4e38 to 3.4e38

4

%f

double

-1.7e4932 to +1.7e308

8

%lf

long double

-1.7e4932 to 1.7e4932

10

%lf

	

	Expressions

	

	Evaluation of expression

	

	An expression is a combination of variables, constants and operators arranged according to the syntax of the language.

	

	C can handle any complex expression with ease.

	

	It is little bit different from algebraic expression.

	

	Algebraic Expressions

C Expressions

axb-cxd

a*b-c*d

(m+n)(a+b)

(m+n)*(a+b)

	

	Evaluation of expression:

	

	We can evaluate an expression by using assignment statement. As

	

	Variable = Expression.

	

	e.g. :

	

	Temp = ((f * cos(x)/sin (y))+(g * sin(x)/cos(y)))

	

	All relevant variables must be assigned values before the evaluation of the expression.

	

	Type conversion in expression:

	

	To effectively develop C programs, it would be necessary for you to understand the rules that are used for the implicit conversion of operands.

	

	If an expression contains an operation between an int and a float, the int would be automatically promoted to a float before carrying out of operation.

	

	

	Automatic type conversion

	

	If the operands are of different types the lower type is automatically converted to thehigher type before the operation proceeds

	The result is of the higher type

	

	Given below is the sequence of rules that are applied by evaluating expressions.

	

	Operator 1

Operator 2

Result

Long Double

any

Long Double
Double

any
Double
Float

any
Float
Unsigned Long Int

any
Unsigned Long In
Long Int

any
Long Int
Unsigned Int

any
Unsigned Int

	

	Final result of an expression to the type of the variable on the left of the assignment signed before assigning the value to it.

	

	However, the following changes are introduced during the final assignment:

	

	1. Float to Int causes truncation of the fractional part.

	

	2. Double to float causes rounding of digits.

	

	3. Long int to int causes dropping of the excess higher order bits

	

	Type Casting:

	

	Casting a value is a forcing a type conversion in a way that is different from the automatic conversion and this process is called type cast.

	This should be clear from the following examples:

	

	An example of automatic conversion:

	

	[image: image16.png]TYPECAST.C

¥i
Clpsa /o clear the ouspu screen
printf("the value of a = %f',

getch(;

	

	Output of automatic conversion:

	

	[image: image17.png]

	

	The answer turns out to be 1.000000 and not 1.5 this is because, 6 and 4 are both integers, and hence 6/4 yields an integer, 1.

	

	This 1 when stored in a is converted to 1.000000. But what if you don't want the question to be truncated. One solution is to make either x or y as a float.

	

	The general form of casting is:

	

	(type_desired) expression;

	where type_desired : standard C data types and

	expression: constant, variables or an expression.

	

	An example of type casting:

	

	[image: image18.png]TYPECAS.C

int production, sale;
float ratio;
clrserQ);

printf("in Enter the value of production:\n");
scanf(,&production);

printf("\n Enter the value oF sale : \n");
scanf(_,&sale);

rati (ﬂcat)groducticn/sa'\e:

printf("in value of ratio = %fin",ratio);

getchQ);

	

	Output of type casting example:

	

	[image: image19.png]3Enter the value of production:

Enter the value of sale :
4

value of ratio = 7.500000

	

	Type Definition using typedef

	

	C allows us to create data types via the typedef statement.

	

	The format of typedef statement is:

	

	typedef data type new_type_name;

	

	Example:

	

	typedef int units;

	units bat1,bat2; /*this statement is equivalent to int bat1,bat2*/

	

	

	Basic Input/Output

	

	Introduction

	

	Input refers to accepting data while output refers to presenting data. Every program performs three main functions accepting data from user, processing it and producing theoutput.

	

	In C language there are several input and output functions.

	

	These functions are collectively found in IO.h and such IO function together form a library name stdio.h .

	

	User will require all such library function.

	

	These library functions are classified into three broad categories:

	

	 1. Console I/O functions

	

	2. Disc I/O functions

	

	3. Port I/O functions

	

	Console I/O function

	

	Console I/O refers to the operation that occur at the keyboard and the screen of your computer.

	

	Console I/O function can also be classified in two parts:

	

	1. Formatted console I/O:

	

	Formatted I/O function accepts or present in a particular format. The example of formatted console I/O function is printf() and scanf().

	

	printf

	

	It is highly desirable that the output are presented in such a way that they are understandable and are in a form easy to use.

	

	The printf() statement provides certain features through which the screen output is effectively controlled.

	The general form of printf() function is:

	

	printf("Control String ",arg1,arg2....);

	

	Control string may contain:

	

	1. character that are simply printed as they are.

	

	2. Conversion specification that begin with a sign.

	

	3. Escape sequence that begin with \ sign.

	

	Given below is a list of conversion charcter that can be used with printf() function:

	

	[image: image20.png]Control String Entry What Gets Printed

% A Decimal Integer
% A Floating Point Value
fie A Character

Ys A Character String

	

	scanf

	

	scanf allows formatted reading of data from the keyboard. Like printf it has a control string, followed by the list of items to be read.

	

	However scanf wants to know the address of the items to be read, since it is a function which will change that value. Therefore the names of variables are preceeded by the & sign.

	

	Character strings are an exception to this. Since a string is already a character pointer, we give the names of string variables unmodified by a leading &.

	

	Control string entries which match values to be read are preceeded by the percentage sign in a similar way to their printf equivalents.

	

	2. Unformatted console I/O:

	

	This function cannot control the format of reading and writing the data. some of the example of this function are getch(),getche(),getchar(),gets(),putchar(),putch()andputs().

	

	getchar

	

	getchar returns the next character of keyboard input as an int.

	

	If there is an error then EOF (end of file) is returned instead. It is therefore useful to compare this value against EOF before using it.

	

	If the return value is stored in a char, it will never be equal to EOF, so error conditions will not be handled correctly.

	

	As an example, here is a program to count the number of characters read until an EOF is encountered. EOF can be generated by typing Control - d.

	

	[image: image21.png]char.l:h [100];

iaach
v{mﬂe ({ch[i]=getchar())

i+

}
printf("\n The length of string =
getch();

R H

	

	Output of the program:

	

	[image: image22.png]E Tubo Cos IDE L=Iofx]

This 15 amit

The length of string = 12

	

	putchar

	

	putchar puts its character argument on the standard output (usually the screen).

	

	The following example program converts any typed input into capital letters.

	

	To do this it applies the function toupper from the character conversion library ctype.h to each character in turn.

	

	An example program using putchar.

	

	[image: image23.png]PUTCHAR. C

l#incTude<conio. h
linclude<ctype.

int ch;

clrser():
while((ch=getchar())
putchar Ctoupper (ch));

getch();

	

	Output of the program:

	

	[image: image24.png] Tubo Cee IDE

	

	gets

	

	gets reads a whole line of input into a string until a newline or EOF is encountered. It is critical to ensure that the string is large enough to hold any expected input lines. When allinput is finished, NULL as defined in stdio.h is returned

	

	puts

	

	puts writes a string to the output, and follows it with a newline character.

	

	An example program which uses gets and puts to double space typed input

	

	[image: image25.png]void mam()

char 1ine[2861;/*define string sufficiently
Targe o store a line input */

if(gets(Tine)t=""1")/read Tine */

puts(line); /sprint line */
BrntfC o] Peprine bank Tine o/

}
getch();

	

	Out put of the program

	

	[image: image26.png]Lo U =I5

e AN

	

	

	Note: putchar, printf and puts can be freely used together. So can getchar, scanf andgets.

	

	
Disc & Port I/O function

	

	Function which performs secondary storage devices like floppy disk or hard disk is calleddisk I/O functions.

	

	

	Port I/O functions

	

	This type of functions performs I/O operation among various codes like printer port,mouse port.

	

	

	

	

